

Contraction, propagation and bisection on a validated simulation of ODE

Julien Alexandre dit Sandretto Alexandre Chapoutot

Recall on validated simulation

Contraction on a validated simulation

Propagation

Experimentations

Discussion

Recall on validated simulation

Initial value problem

$$
\dot{y}=f(y, p, t) \text { with } y(0) \in\left[y_{0}\right] \text { and } p \in[p] .
$$

Classical approach
Lohner 2-steps method:

1. Find $\left[\tilde{y}_{i}\right]$ and h_{i} with Picard-Lindelöf operator and Banach's theorem

Recall on validated simulation

Validated simulation \Rightarrow Two lists of boxes
$\mathcal{S}=\left\{\left[y_{0}\right], \ldots,\left[y_{i}\right], \ldots,\left[y_{N}\right]\right\}$ and $\tilde{\mathcal{S}}=\left\{\left[\tilde{y}_{0}\right], \ldots,\left[\tilde{y}_{i}\right], \ldots,\left[\tilde{y}_{N}\right]\right\}$, such that, for all p and y_{0},

- $y\left(t_{i}\right) \in\left[y_{i}\right]$ with $t_{i} \in\left\{0, t_{1}, \ldots, t_{N}\right\}$
- $y(t) \in\left[\tilde{y}_{i}\right]$ for all $t \in\left[t_{i}, t_{i+1}\right]$

Contractors

An interval contractor (Ctc)

- $\operatorname{Ctc}([x]) \subset[x]$ (contractance property)
- $\operatorname{Ctc}([x]) \cap \mathcal{X}=[x] \cap \mathcal{X}$ (completeness property)

A contractor associated to a constraint is a contractor associated to the set \mathcal{X} of all x which satisfy the constraint.

Contractors in simulation

- Picard operator is a contractor $\operatorname{Ctc}_{\text {picard }}\left(\left[\tilde{y}_{j}\right]\right):=\left[\tilde{y}_{j}\right] \cap\left[y_{j}\right]+\int_{0}^{h} f\left(\left[\tilde{y}_{j}\right]\right) d s$
- Validated integration scheme is a contractor Ctcintegration $\left(\left[y_{j+1}\right]\right):=\left[y_{j+1}\right] \cap\left[y_{j}\right]+\int_{0}^{h} f\left(\left[y_{j}\right]\right) d s$
(\int enclosed by validated Taylor or RK)

Contractors based on tricks

Monotonicity contractor
If $0 \notin f\left(\left[\tilde{y}_{j}\right]\right)$, monotonicity allows $\left[\tilde{y}_{j}\right]=\left[y_{j}\right] \cup\left[y_{j+1}\right]$ (and recomputation of $\left[y_{j+1}\right]$ with new remainder and fixed point...)

Slicing contractor

If $\left[y_{j+1}\right] \supset\left[y_{j}\right]$ (possible attractor in $\left.\left[y_{j}\right]\right)$, slicing of $\left[y_{j}\right]$, integration of slices, and $\left[y_{j+1}\right]=$ union of results...

Constraint Satisfaction Differential Problems

Problem

If information is given on $y(t) \Rightarrow$ how take it into account ?
Information on $y(t)$
Given under the form of a temporal set constraints: $y\left(t^{*}\right) \in \mathcal{A}$ Note: \mathcal{A} can be the result of a contraction of $y\left(t^{*}\right)$

$$
\left\{y\left(t_{1}\right) \in \mathcal{A}_{1}, \ldots, y\left(t_{z}\right) \in \mathcal{A}_{z}\right\}
$$

Our Approach
Contraction and propagation of already computed simulation:
\square

Constraint Satisfaction Differential Problems

Problem

If information is given on $y(t) \Rightarrow$ how take it into account ? Information on $y(t)$
Given under the form of a temporal set constraints: $y\left(t^{*}\right) \in \mathcal{A}$ Note: \mathcal{A} can be the result of a contraction of $y\left(t^{*}\right)$
w.r.t. a constraint (e.g. $y\left(t^{*}\right)^{2}-3 \cos \left(y\left(t^{*}\right)\right)<0$ or $\left.y\left(t^{*}\right) \notin \mathcal{B}\right)$ For us, a CSDP is a set of temporal set constraints:

$$
\left\{y\left(t_{1}\right) \in \mathcal{A}_{1}, \ldots, y\left(t_{z}\right) \in \mathcal{A}_{z}\right\}
$$

Our Approach
Contraction and propagation of already computed simulation:
avoids costly Lohner first step

Constraint Satisfaction Differential Problems

Problem

If information is given on $y(t) \Rightarrow$ how take it into account ? Information on $y(t)$
Given under the form of a temporal set constraints: $y\left(t^{*}\right) \in \mathcal{A}$ Note: \mathcal{A} can be the result of a contraction of $y\left(t^{*}\right)$ w.r.t. a constraint (e.g. $y\left(t^{*}\right)^{2}-3 \cos \left(y\left(t^{*}\right)\right)<0$ or $\left.y\left(t^{*}\right) \notin \mathcal{B}\right)$ For us, a CSDP is a set of temporal set constraints:

$$
\left\{y\left(t_{1}\right) \in \mathcal{A}_{1}, \ldots, y\left(t_{z}\right) \in \mathcal{A}_{z}\right\}
$$

Our Approach
Contraction and propagation of already computed simulation:
avoids costly Lohner first step

How take a temporal set constraint into account ?

$$
y\left(t^{*}\right) \in \mathcal{A}
$$

1-Add a new integration step
Simulation becomes: $\mathcal{S}=\left\{\left[y_{0}\right], \ldots,\left[y_{i}\right],\left[y_{k}\right],\left[y_{i+1}\right], \ldots,\left[y_{N}\right]\right\}$
s.t. $t_{k}=t^{*}$ and $y\left(t_{k}\right) \in\left[y_{k}\right]$, and same for
\Rightarrow without Lohner first step because $y\left(t_{k}\right) \in\left[\tilde{y}_{i}\right]$ and $h=t_{k}-t_{i}$

2-Contraction
Apply the basic contractor $\left[y_{k}\right]:=\left[y_{k}\right] \cap \mathcal{A}$

How take a temporal set constraint into account ?

$$
y\left(t^{*}\right) \in \mathcal{A}
$$

1-Add a new integration step
Simulation becomes: $\mathcal{S}=\left\{\left[y_{0}\right], \ldots,\left[y_{i}\right],\left[y_{k}\right],\left[y_{i+1}\right], \ldots,\left[y_{N}\right]\right\}$ s.t. $t_{k}=t^{*}$ and $y\left(t_{k}\right) \in\left[y_{k}\right]$, and same for $\tilde{\mathcal{S}}$
\Rightarrow without Lohner first step because $y\left(t_{k}\right) \in\left[\tilde{y}_{i}\right]$ and $h=t_{k}-t_{i}$

How take a temporal set constraint into account ?

$$
y\left(t^{*}\right) \in \mathcal{A}
$$

1-Add a new integration step
Simulation becomes: $\mathcal{S}=\left\{\left[y_{0}\right], \ldots,\left[y_{i}\right],\left[y_{k}\right],\left[y_{i+1}\right], \ldots,\left[y_{N}\right]\right\}$ s.t. $t_{k}=t^{*}$ and $y\left(t_{k}\right) \in\left[y_{k}\right]$, and same for $\tilde{\mathcal{S}}$
\Rightarrow without Lohner first step because $y\left(t_{k}\right) \in\left[\tilde{y}_{i}\right]$ and $h=t_{k}-t_{i}$
2-Contraction
Apply the basic contractor $\left[y_{k}\right]:=\left[y_{k}\right] \cap \mathcal{A}$

Remark on bisection

Of boxes

Bisection of $[A]$:
$\left[A_{\text {left }}\right]:=\operatorname{Ctc}_{\text {left }}([A])$ and $\left[A_{\text {right }}\right]:=\operatorname{Ctc}_{\text {right }}([A])$

Of states

Bisection of $y(t)$ at $t=t^{*}$:
$\mathcal{S}_{\text {left }}=\mathcal{S}$ and $\mathcal{S}_{\text {right }}=\mathcal{S}$, then $\mathcal{S}_{\text {left }}: y\left(t^{*}\right) \in \operatorname{Ctc}_{\text {left }}\left(\left[y_{k}\right]\right)$ and $\mathcal{S}_{\text {right }}: y\left(t^{*}\right) \in$ Ctc $_{\text {right }}\left(\left[y_{k}\right]\right)$

Remark on bisection

Of boxes

Bisection of $[A]$:
$\left[A_{\text {left }}\right]:=\operatorname{Ctc}_{\text {left }}([A])$ and $\left[A_{\text {right }}\right]:=\operatorname{Ctc}_{\text {right }}([A])$
Of states
Bisection of $y(t)$ at $t=t^{*}$:
$\mathcal{S}_{\text {left }}=\mathcal{S}$ and $\mathcal{S}_{\text {right }}=\mathcal{S}$, then $\mathcal{S}_{\text {left }}: y\left(t^{*}\right) \in \operatorname{Ctc}_{l_{\text {eft }}}\left(\left[y_{k}\right]\right)$ and $\mathcal{S}_{\text {right }}: y\left(t^{*}\right) \in \operatorname{Ctc}_{\text {right }}\left(\left[y_{k}\right]\right)$

Propagation

Important to propagate " $y\left(t^{*}\right) \in \mathcal{A}$ " to $y(t), \forall t$
Forward propagation
From t^{*} to $t_{\text {end }}$
Ctc $c_{\text {picard }}+$ Ctc $_{\text {integration }}$
Remark: Picard first to reduce Lagrange remainder of integration
Backward propagation
From t^{*} to t_{0}
Ctc $_{\text {picard }}+$ Ctc $_{\text {integration }}$
with inverse function - f and past stepsize $h=t_{i}-t_{i-1}$
Fixed point
While sufficient improvement w.r.t. a given threshold:
From t_{0} to $t_{\text {end }}$
Forward propagation
From $t_{\text {end }}$ to t_{0} :
Backward propagation
Julien Alexandre dit Sandretto - Contraction, propagation on a simulation of ODE

Propagation

Important to propagate " $y\left(t^{*}\right) \in \mathcal{A}$ " to $y(t), \forall t$
Forward propagation
From t^{*} to $t_{\text {end }}$:
Ctc $c_{\text {picard }}+$ Ctc $_{\text {integration }}$
Remark: Picard first to reduce Lagrange remainder of integration
Backward propagation
From t^{*} to t_{0}
Ctc $_{\text {picard }}+$ Ctc $_{\text {integration }}$
with inverse function -f and past stepsize $h=t_{i}-t_{i-1}$ Fixed point

While sufficient improvement w.r.t. a given threshold:
From t_{0} to $t_{\text {end }}$
Forward propagation
From $t_{\text {end }}$ to t_{0}
Backward propagation

Propagation

Important to propagate " $y\left(t^{*}\right) \in \mathcal{A}$ " to $y(t), \forall t$
Forward propagation
From t^{*} to $t_{\text {end }}$:
Ctc $c_{\text {picard }}+$ Ctc $_{\text {integration }}$
Remark: Picard first to reduce Lagrange remainder of integration Backward propagation
From t^{*} to t_{0} :
Ctc $c_{\text {picard }}+C t c_{\text {integration }}$
with inverse function - f and past stepsize $h=t_{i}-t_{i-1}$

From $t_{\text {end }}$ to t_{0}
Backward propagation

Propagation

Important to propagate " $y\left(t^{*}\right) \in \mathcal{A}$ " to $y(t), \forall t$

Forward propagation

From t^{*} to $t_{\text {end }}$:
Ctc $c_{\text {picard }}+$ Ctc $_{\text {integration }}$
Remark: Picard first to reduce Lagrange remainder of integration Backward propagation
From t^{*} to t_{0} :
Ctc $c_{\text {picard }}+$ Ctc $_{\text {integration }}$
with inverse function - f and past stepsize $h=t_{i}-t_{i-1}$
Fixed point
While sufficient improvement w.r.t. a given threshold:
From t_{0} to $t_{\text {end }}$:
Forward propagation
From $t_{\text {end }}$ to t_{0} : Backward propagation

Example

```
Van Der Pol
    \(\left\{\begin{array}{c}x^{\prime}=y \\ y^{\prime}=2.0\left(1.0-x^{2}\right) y-x\end{array}\right.\)
\(x(0) \in[2.0,2.2]\) and \(y(0) \in[0.0,0.1]\)
\(t_{\text {end }}=2.0\)
```


Bisection then propagation

$x(0)=\left\{x(0)_{\text {left }}, x(0)_{\text {right }}\right\}$
1 simulation then 2 propagations vs 3 simulations
Time : $2+2^{*} 1=4 \mathrm{sec}$. vs $2^{*} 3=6 \mathrm{sec}$.

Julien Alexandre dit Sandretto - Contraction, propagation on a simulation of ODE

Bisection then propagation

$x(0)=\left\{x(0)_{\text {left }}, x(0)_{\text {right }}\right\}$
1 simulation then 2 propagations vs 3 simulations
Time : $2+2^{*} 1=4 \mathrm{sec}$. vs $2 * 3=6 \mathrm{sec}$.

Bisection then propagation

$x(0)=\left\{x(0)_{\text {left }}, x(0)_{\text {right }}\right\}$
1 simulation then 2 propagations vs 3 simulations
Time : $2+2^{*} 1=4 \mathrm{sec}$. vs $2 * 3=6 \mathrm{sec}$.

Bisection then propagation

$x(0)=\left\{x(0)_{\text {left }}, x(0)_{\text {right }}\right\}$
1 simulation then 2 propagations vs 3 simulations
Time : $2+2 * 1=4 \mathrm{sec}$. vs $2 * 3=6 \mathrm{sec}$.

Contraction then propagation : Initial

$$
y(1.0) \in[1.58,1.62] \text { and } x(1.0) \in[-0.74,-0.69]
$$

Contraction then propagation: With Measure

$$
y(1.0) \in[1.58,1.62] \text { and } x(1.0) \in[-0.74,-0.69]
$$

Contraction then propagation: Contraction

$$
y(1.0) \in[1.58,1.62] \text { and } x(1.0) \in[-0.74,-0.69]
$$

Contraction then propagation : Forward

$$
y(1.0) \in[1.58,1.62] \text { and } x(1.0) \in[-0.74,-0.69]
$$

Contraction then propagation : Backward

$$
y(1.0) \in[1.58,1.62] \text { and } x(1.0) \in[-0.74,-0.69]
$$

Contraction then propagation : Fixed Point

$$
y(1.0) \in[1.58,1.62] \text { and } x(1.0) \in[-0.74,-0.69]
$$

Discussion

Remarks

- Propagation of a contraction on one state is close to a contraction on a tube [2]
- Easy to generalize to a contraction on parameters by changing $f(y,[p])$ by $f(y, \operatorname{Ctc}([p]))$
- Easy to generalize to interval of time $(t=[\underline{t}, \bar{t}]$ same job for \underline{t} and \bar{t})
- Periodicity, limit cycle, etc.

Future work

Finalize implementation of CSDP in DynIBEX and applications !
[2] A. Bethencourt, and L. Jaulin, Solving Non-Linear Constraint Satisfaction Problems Involving Time-Dependant
Functions, Mathematics in Computer Science, 2014.

Questions ?

