

Contraction, propagation and bisection on a validated simulation of ODE

Julien Alexandre dit Sandretto Alexandre Chapoutot

ENSTA ParisTech universite

Department U2IS ENSTA ParisTech SWIM 2016 - Lyon Contents

Recall on validated simulation

Contraction on a validated simulation

Propagation

Experimentations

Discussion

Recall on validated simulation

Initial value problem

$$\dot{y} = f(y, p, t)$$
 with $y(0) \in [y_0]$ and $p \in [p]$.

Classical approach

Lohner 2-steps method:

- 1. Find $[\tilde{y}_i]$ and h_i with Picard-Lindelöf operator and Banach's theorem
- Compute [y_{i+1}] with a validated integration scheme: Taylor (Vnode-LP, CAPD) or Runge-Kutta (DynIbex)

Recall on validated simulation

Validated simulation \Rightarrow Two lists of boxes

 $S = \{[y_0], \dots, [y_i], \dots, [y_N]\}$ and $\tilde{S} = \{[\tilde{y_0}], \dots, [\tilde{y_i}], \dots, [\tilde{y_N}]\}$, such that, for all p and y_0 ,

- $y(t_i) \in [y_i]$ with $t_i \in \{0, t_1, ..., t_N\}$
- $y(t) \in [\tilde{y}_i]$ for all $t \in [t_i, t_{i+1}]$

Contractors

An interval contractor (Ctc)

- Ctc([x]) ⊂ [x] (contractance property)
- $Ctc([x]) \cap \mathcal{X} = [x] \cap \mathcal{X}$ (completeness property)

A contractor associated to a constraint is a contractor associated to the set \mathcal{X} of all x which satisfy the constraint.

Contractors in simulation

- Picard operator is a contractor $Ctc_{picard}([\tilde{y}_j]) := [\tilde{y}_j] \cap [y_j] + \int_0^h f([\tilde{y}_j]) ds$
- Validated integration scheme is a contractor Ctc_{integration}([y_{j+1}]) := [y_{j+1}] ∩ [y_j] + ∫₀^h f([y_j])ds

(\int enclosed by validated Taylor or RK)

Contractors based on tricks

Monotonicity contractor

If $0 \notin f([\tilde{y}_j])$, monotonicity allows $[\tilde{y}_j] = [y_j] \cup [y_{j+1}]$ (and recomputation of $[y_{j+1}]$ with new remainder and fixed point...)

Slicing contractor

If $[y_{j+1}] \supset [y_j]$ (possible attractor in $[y_j]$), slicing of $[y_j]$, integration of slices, and $[y_{j+1}] =$ union of results...

Contraction on a validated simulation

Constraint Satisfaction Differential Problems

Problem

If information is given on $y(t) \Rightarrow$ how take it into account ?

Information on y(t)

Given under the form of a temporal set constraints: $y(t^*) \in A$ Note: A can be the result of a contraction of $y(t^*)$

w.r.t. a constraint (e.g. $y(t^*)^2 - 3\cos(y(t^*)) < 0$ or $y(t^*) \notin B$) For us, a CSDP is a set of temporal set constraints:

$$\{y(t_1)\in \mathcal{A}_1,\ldots,y(t_z)\in \mathcal{A}_z\}$$

Our Approach

Contraction and propagation of already computed simulation:

avoids costly Lohner first step

Constraint Satisfaction Differential Problems

Problem

If information is given on $y(t) \Rightarrow$ how take it into account ?

Information on y(t)

Given under the form of a temporal set constraints: $y(t^*) \in \mathcal{A}$ Note: \mathcal{A} can be the result of a contraction of $y(t^*)$

w.r.t. a constraint (e.g. $y(t^*)^2 - 3\cos(y(t^*)) < 0$ or $y(t^*) \notin B$) For us, a CSDP is a set of temporal set constraints:

$$\{y(t_1)\in \mathcal{A}_1,\ldots,y(t_z)\in \mathcal{A}_z\}$$

Our Approach

Contraction and propagation of already computed simulation:

avoids costly Lohner first step

Constraint Satisfaction Differential Problems

Problem

If information is given on $y(t) \Rightarrow$ how take it into account ?

Information on y(t)

Given under the form of a temporal set constraints: $y(t^*) \in A$ Note: A can be the result of a contraction of $y(t^*)$

w.r.t. a constraint (e.g. $y(t^*)^2 - 3\cos(y(t^*)) < 0$ or $y(t^*) \notin B$) For us, a CSDP is a set of temporal set constraints:

$$\{y(t_1)\in \mathcal{A}_1,\ldots,y(t_z)\in \mathcal{A}_z\}$$

Our Approach

Contraction and propagation of already computed simulation:

avoids costly Lohner first step

How take a temporal set constraint into account ?

$$y(t^*) \in \mathcal{A}$$

1-Add a new integration step

Simulation becomes: $S = \{[y_0], \dots, [y_i], [y_k], [y_{i+1}], \dots, [y_N]\}\$ s.t. $t_k = t^*$ and $y(t_k) \in [y_k]$, and same for \tilde{S} \Rightarrow without Lohner first step because $y(t_k) \in [\tilde{y}_i]$ and $h = t_k - t_k$

2-Contraction

Apply the basic contractor $[y_k] := [y_k] \cap \mathcal{A}$

How take a temporal set constraint into account ?

$$y(t^*) \in \mathcal{A}$$

1-Add a new integration step

Simulation becomes: $S = \{[y_0], \dots, [y_i], [y_k], [y_{i+1}], \dots, [y_N]\}$ s.t. $t_k = t^*$ and $y(t_k) \in [y_k]$, and same for \tilde{S} \Rightarrow without Lohner first step because $y(t_k) \in [\tilde{y}_i]$ and $h = t_k - t_i$

2-Contraction

Apply the basic contractor $[y_k] := [y_k] \cap \mathcal{A}$

How take a temporal set constraint into account ?

$$y(t^*) \in \mathcal{A}$$

1-Add a new integration step

Simulation becomes: $S = \{[y_0], \dots, [y_i], [y_k], [y_{i+1}], \dots, [y_N]\}$ s.t. $t_k = t^*$ and $y(t_k) \in [y_k]$, and same for \tilde{S} \Rightarrow without Lohner first step because $y(t_k) \in [\tilde{y}_i]$ and $h = t_k - t_i$

2-Contraction

Apply the basic contractor $[y_k] := [y_k] \cap \mathcal{A}$

Remark on bisection

Of boxes

Bisection of [A] : $[A_{left}] := Ctc_{left}([A])$ and $[A_{right}] := Ctc_{right}([A])$

Of states

Bisection of y(t) at $t = t^*$: $S_{left} = S$ and $S_{right} = S$, then $S_{left} : y(t^*) \in Ctc_{left}([y_k])$ and $S_{right} : y(t^*) \in Ctc_{right}([y_k])$

Remark on bisection

Of boxes

Bisection of [A]: $[A_{left}] := Ctc_{left}([A])$ and $[A_{right}] := Ctc_{right}([A])$

Of states

Bisection of y(t) at $t = t^*$: $S_{left} = S$ and $S_{right} = S$, then $S_{left} : y(t^*) \in Ctc_{left}([y_k])$ and $S_{right} : y(t^*) \in Ctc_{right}([y_k])$

Propagation Important to propagate " $y(t^*) \in \mathcal{A}$ " to y(t), $\forall t$ Forward propagation

From t^{*} to t_{end} : Ctc_{picard} + Ctc_{integration} Remark: Picard first to reduce Lagrange remainder of integration Backward propagation

From t^* to t_0 :

 $Ctc_{picard} + Ctc_{integration}$ with inverse function - f and past stepsize $h = t_i - t_{i-1}$

Fixed point

While sufficient improvement w.r.t. a given threshold:

From t₀ to t_{end} :

Forward propagation

From t_{end} to t_0 :

Backward propagation

Important to propagate " $y(t^*) \in \mathcal{A}$ " to y(t), $\forall t$ Forward propagation

From t^* to t_{end} :

Ctc_{picard} + Ctc_{integration} Remark: Picard first to reduce Lagrange remainder of integration

Backward propagation

From t^* to t_0 : $Ctc_{picard} + Ctc_{integration}$ with inverse function -f and past stepsize $h = t_i - t_{i-1}$

Fixed point

While sufficient improvement w.r.t. a given threshold:

From to to tend :

Forward propagation

From t_{end} to t_0 :

Backward propagation

Important to propagate " $y(t^*) \in \mathcal{A}$ " to y(t), $\forall t$ Forward propagation

From t^* to t_{end} :

 $Ctc_{picard} + Ctc_{integration}$ Remark: Picard first to reduce Lagrange remainder of integration Backward propagation

From t^* to t_0 : $Ctc_{picard} + Ctc_{integration}$ with inverse function -f and past stepsize $h = t_i - t_{i-1}$

Fixed point

While sufficient improvement w.r.t. a given threshold:

From t_0 to t_{end} :

Forward propagation

From t_{end} to t_0 :

Backward propagation

Important to propagate " $y(t^*) \in \mathcal{A}$ " to y(t), $\forall t$ Forward propagation

From t^* to t_{end} :

Ctc_{picard} + Ctc_{integration} Remark: Picard first to reduce Lagrange remainder of integration Backward propagation

From t^* to t_0 :

 $Ctc_{picard} + Ctc_{integration}$ with inverse function - f and past stepsize $h = t_i - t_{i-1}$

Fixed point

While sufficient improvement w.r.t. a given threshold:

From t_0 to t_{end} :

Forward propagation

From t_{end} to t_0 :

Backward propagation

Example

Van Der Pol

$$\begin{cases} x' = y \\ y' = 2.0(1.0 - x^2)y - x \end{cases}$$

$$x(0) \in [2.0, 2.2] \text{ and } y(0) \in [0.0, 0.1]$$

$$t_{end} = 2.0$$

Bisection then propagation $x(0) = \{x(0)_{left}, x(0)_{right}\}$ 1 simulation then 2 propagations vs 3 simulations Time : 2+2*1 = 4 sec. vs 2*3 = 6 sec.

Bisection then propagation $x(0) = \{x(0)_{left}, x(0)_{right}\}$ 1 simulation then 2 propagations vs 3 simulations Time : 2+2*1 = 4 sec. vs 2*3 = 6 sec.

Bisection then propagation $x(0) = \{x(0)_{left}, x(0)_{right}\}$ 1 simulation then 2 propagations vs 3 simulations Time : 2+2*1 = 4 sec. vs 2*3 = 6 sec.

ENSTA ParisTech. Universite PARIS-SACLAY

Bisection then propagation

 $\begin{aligned} x(0) &= \{x(0)_{left}, x(0)_{right}\}\\ 1 \text{ simulation then 2 propagations } vs \quad 3 \text{ simulations}\\ \text{Time} : 2+2*1 = 4 \text{ sec. } vs \quad 2*3 = 6 \text{ sec.} \end{aligned}$

Contraction then propagation : Initial $y(1.0) \in [1.58, 1.62]$ and $x(1.0) \in [-0.74, -0.69]$

Contraction then propagation : With Measure $y(1.0) \in [1.58, 1.62]$ and $x(1.0) \in [-0.74, -0.69]$

Contraction then propagation : Contraction $y(1.0) \in [1.58, 1.62]$ and $x(1.0) \in [-0.74, -0.69]$

Contraction then propagation : Forward $y(1.0) \in [1.58, 1.62]$ and $x(1.0) \in [-0.74, -0.69]$

Contraction then propagation : Backward $y(1.0) \in [1.58, 1.62]$ and $x(1.0) \in [-0.74, -0.69]$

Contraction then propagation : Fixed Point $y(1.0) \in [1.58, 1.62]$ and $x(1.0) \in [-0.74, -0.69]$

Discussion

Remarks

- Propagation of a contraction on one state is close to a contraction on a tube [2]
- Easy to generalize to a contraction on parameters by changing f(y, [p]) by f(y, Ctc([p]))
- ► Easy to generalize to interval of time (t = [t, t] same job for t and t)
- Periodicity, limit cycle, etc.

Future work

Finalize implementation of CSDP in DynIBEX and applications !

[2] A. Bethencourt, and L. Jaulin, Solving Non-Linear Constraint Satisfaction Problems Involving Time-Dependant

Functions, Mathematics in Computer Science, 2014.

Discussion

Questions ?