Decision Making Under Twin Interval Uncertainty

Barnabas Bede¹, Olga Kosheleva², and Vladik Kreinovich²

> ¹DigiPen Institute of Technology 9931 Willows Rd. Redmond, WA 98052, USA bbede@digipen.edu

²University of Texas at El Paso El Paso, Texas 79968, USA vladik@utep.edu

Decision Waking		
Decision Making		
Case of Twin Uncertaint		
Our Main Idea		
This Idea Is Consistent		
Towards Applications		
Case of Interval		
Need for Twin Interval		
Our Main Result		
Home Page		
Title Page		
Page 1 of 17		
Go Back		
Full Screen		
Class		
Close		
Quit		

D isten Marki

1. Decision Making: General Idea

- According to the decision theory:
 - a reasonable person should select an alternative a
 - for which an appropriate objective function u(a) called *utility* attains its largest possible value.
- The utility function is usually selected in such a way that:
 - if for some action a, we know the probabilities p_i of different outcomes o_i ,
 - then the utility of a is equal to the expected value of the utilities: $u(a) = \sum_{i=1}^{n} p_i \cdot u(o_i).$
- Such a utility function is determined uniquely modulo a linear transformation

$$u(a) \rightarrow u'(a) = k \cdot u(a) + \ell$$
, where $k > 0$.

Decision Making:				
Decision Making				
Case of Twin Uncertainty				
Our Main Idea				
This Idea Is Consistent				
Towards Applications				
Case of Interval				
Need for Twin Interval				
Our Main Result				
Home Page				
Title Page				
44				
Page 2 of 17				
Go Back				
Full Screen				
Close				
Quit				

2. Decision Making Under Interval Uncertainty

- For some actions, we have no information about the probabilities of different outcomes o_i .
- In this case, all we know about the expected utility u(a) is that it is in the interval $[\underline{u}(a), \overline{u}(a)]$, where $\underline{u}(a) = \min_{i} u(o_{i})$ and $\overline{u}(a) = \max_{i} u(o_{i})$.
- To make decisions under such interval uncertainty, we must, in particular, we able to compare:
 - such actions with interval uncertainty with
 - actions for which we know the expected utility u(a).
- Thus, we need to be able to assign, to each interval $[\underline{u}(a), \overline{u}(a)]$, an equivalent utility value u(a).
- A way to assign such an equivalent utility value was proposed by a Nobel Prize winner Leo Hurwicz:

$$u(a) = \alpha \cdot \overline{u}(a) + (1 - \alpha) \cdot \underline{u}(a)$$

- 3. Decision Making Under Interval Uncertainty (cont-d)
 - Reminder: $u(a) = \alpha \cdot \overline{u}(a) + (1 \alpha) \cdot \underline{u}(a)$.
 - Here, $\alpha \in [0,1]$ describes the optimism level of the decision maker:
 - $\alpha = 1$ means that the decision maker only takes into account the best-case scenario,
 - $\alpha = 0$ means that only the worst-case scenario is taken into account, and
 - $\alpha \in (0, 1)$ means that both best-case and worst-case scenarios are taken into account.
 - It turns out that the Hurwicz assignment is invariant relative to linear transformations of utility.
 - It is actually the *only* invariant assignment.

4. Case of Twin Uncertainty

- In practice, sometimes, we do not know the exact values of $\underline{u}(a)$ and $\overline{u}(a)$.
- For example, we may only know the bounds on each of these bounds:
 - we know that $\underline{u}(a) \in [\underline{u}^{-}(a), \underline{u}^{+}(a)]$ and
 - we know that that $\overline{u}(a) \in [\overline{u}^{-}(a), \overline{u}^{+}(a)].$
- Such a situation is known as a *twin interval*.
- How can we make decisions under such twin interval uncertainty?

5. Our Main Idea

- Our main idea is to use Hurwicz assignment several times.
- Specifically, for the lower bound $\underline{u}(a)$, all we know that it is in the interval $[\underline{u}^{-}(a), \underline{u}^{+}(a)]$.
- According to the Hurwicz assignment, this is equivalent to having $\underline{u}(a) = \alpha \cdot \underline{u}^+(a) + (1 - \alpha) \cdot \underline{u}^-(a)$.
- Similar, for $[\overline{u}^{-}(a), \overline{u}^{+}(a)]$, we conclude that the upper bound is equivalent to $\overline{u}(a) = \alpha \cdot \overline{u}^{+}(a) + (1-\alpha) \cdot \overline{u}^{-}(a)$.
- Thus, the original twin interval is equivalent to the interval $[\underline{u}(a), \overline{u}(a)]$.
- For this interval, the Hurwicz assignment produces an equivalent value

$$u(a) = \alpha \cdot \overline{u}(a) + (1 - \alpha) \cdot \underline{u}(a) =$$

$$\alpha^{2} \cdot \overline{u}^{+}(a) + \alpha \cdot (1 - \alpha) \cdot \overline{u}^{-}(a) + \alpha \cdot (1 - \alpha) \cdot \underline{u}^{+}(a) + (1 - \alpha)^{2} \cdot \underline{u}^{-}(a)$$

Decision Making:				
Decision Making				
Case of Twin Uncertainty				
Our Main Idea				
This Idea Is Consistent				
Towards Applications				
Case of Interval				
Need for Twin Interval				
Our Main Result				
Home Page				
Title Page				
•• ••				
Page 6 of 17				
Go Back				
Full Screen				
Close				
Quit				

6. This Idea Is Consistent

- Alternatively, we can consider the situation differently: namely, we consider the actual interval.
- The smallest possible interval in terms of componentwise order – is $[\underline{u}^{-}(a), \overline{u}^{-}(a)]$.
- The largest possible interval is $[\underline{u}^+(a), \overline{u}^+(a)]$.
- For the smallest interval, Hurwicz's equivalent $u^{-}(a)$ is

$$u^{-}(a) = \alpha \cdot \overline{u}^{-}(a) + (1 - \alpha) \cdot \underline{u}^{-}(a).$$

- For the largest interval, the equivalent utility is $u^+(a) = \alpha \cdot \overline{u}^+(a) + (1-\alpha) \cdot \underline{u}^+(a).$
- Thus, possible values of utility form an interval $[u^-(a), u^+(a)].$
- For this interval, the Hurwicz equivalent value is $\alpha \cdot u^+(a) + (1 \alpha) \cdot u^-(a)$, same as before.

7. Towards Applications

- Some physical quantities we can measure directly.
- In many practical situations, we are interested in a quantity y which is difficult to measure directly.
- To estimate the values of such a quantity, a natural idea is:
 - find easier-to-measure quantities x_1, \ldots, x_n related to y by a known dependence $y = f(x_1, \ldots, x_n)$,
 - and then use the results \tilde{x}_i of measuring x_i to compute the estimate $\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n)$.
- Often, the only info that we have about each measurement error $\Delta x_i \stackrel{\text{def}}{=} \widetilde{x}_i x_i$ is the upper bound Δ_i :

 $|\Delta x_i| \leq \Delta_i.$

Decision Making:			
Decision Making			
Case of Twin Uncertainty			
Oı	ur Main Id	ea	
This Idea Is Consistent			
Towards Applications			
Case of Interval			
Need for Twin Interval			
Oı	ur Main Re	esult	
Home Page			
Title Page			
	••	••	
	•	•	
Page 8 of 17			
Go Back			
Full Screen			
Close			
	Quit		

8. Case of Interval Uncertainty

• In this case, the only information that we have about the actual (unknown) value x_i is that

$$x_i \in [\underline{x}_i, \overline{x}_i] = [\widetilde{x}_i - \Delta_i, \widetilde{x}_i + \Delta_i]$$

- Usually, we do not know the dependence between x_i (and we do not even know if there is a dependence).
- The traditional interval approach to this situation is to conclude that y belongs to the range

$$\mathbf{y} \stackrel{\text{def}}{=} \{ f(x_1, \dots, x_n) : x_i \in [\underline{x}_i, \overline{x}_i] \}.$$

• However, in reality, the range $[\underline{y}, \overline{y}]$ depends on the possible dependence between the variables x_i .

- 9. Need for Twin Interval Uncertainty
 - In general, $\underline{y} = \inf\{f(x_1, \dots, x_n) : (x_1, \dots, x_n) \in S\}$ and $\overline{y} = \sup\{f(x_1, \dots, x_n) : (x_1, \dots, x_n) \in S\}$, where:
 - for every i,
 - the projection $\pi_i(S)$ on the *i*-th axis coincides with $[\underline{x}_i, \overline{x}_i]$.
 - For different sets S, we have, in general, different values \underline{y} and \overline{y} .
 - It is therefore desirable to compute the ranges [<u>y</u>⁻, <u>y</u>⁺] and [<u>y</u>⁻, <u>y</u>⁺] of the corresponding values.
 - In other words, it is desirable to compute the corresponding twin interval.
 - Here, \underline{y}^- and \overline{y}^+ are the endpoints of the range \mathbf{y} , which can computed by the usual interval techniques.
 - So, the question is how to compute y^+ and \overline{y}^- .

Decision Making:					
Decision Making					
Cá	Case of Twin Uncertainty				
Oı	Our Main Idea				
Τŀ	This Idea Is Consistent				
Тс	wards App	olications			
Case of Interval					
Need for Twin Interval					
Oı	ur Main Re	esult			
	Home Page				
	Title Page				
	44	••			
	•	•			
	Page 10 of 17				
	Go Back				
	Full Screen				
	Close				
	Quit				

10. Our Main Result

• We consider a practically important case when terms quadratic in Δx_i can be safely ignored; in this case:

$$\Delta y = \widetilde{y} - y = \sum_{i=1}^{n} c_i \cdot \Delta x_i$$
, where $c_i = \frac{\partial f}{\partial x_i}(\widetilde{x}_1, \dots, \widetilde{x}_n)$.

• In turns out that in this case,

$$\overline{y}^{-} = \widetilde{y} + 2\max_{i}(|c_{i}| \cdot \Delta_{i}) - \sum_{i=1}^{n}(|c_{i}| \cdot \Delta_{i}) \text{ and}$$
$$\underline{y}^{+} = \widetilde{y} - 2\max_{i}(|c_{i}| \cdot \Delta_{i}) + \sum_{i=1}^{n}(|c_{i}| \cdot \Delta_{i}).$$

- In particular, this means that the sum, product, etc., of two intervals is now viewed as a twin interval.
- We can then use formulas for decision making under twin interval uncertainty to make decisions.

11. Proof: Main Ideas

• Reminder: $\overline{y}^- = \inf\{\overline{y}(S) : \pi_i(S) = [\underline{x}_i, \overline{x}_i] \text{ for all } i\},$ where $\overline{y}(S) \stackrel{\text{def}}{=} \sup\{f(x_1, \dots, x_n) : (x_1, \dots, x_n) \in S\}.$

• Here,
$$f(x_1, \dots, x_n) = \widetilde{y} + \sum_{i=1}^n c_i \cdot \Delta x_i$$
 and
 $\Delta x_i \in [-\Delta_i, \Delta_i].$

• Without losing generality, we can assume that

$$\max_{i}(|c_i| \cdot \Delta_i) = |c_1| \cdot \Delta_1.$$

• In this case, the desired formula takes the form

$$\overline{y}^{-} = \widetilde{y} + |c_1| \cdot \Delta_1 - \sum_{i=2}^n |c_i| \cdot \Delta_i.$$

12. Proof: First Part

• Let us first prove, by contradiction, that

$$\overline{y}(S) \ge \widetilde{y} + |c_1| \cdot \Delta_1 - \sum_{i=2}^n |c_i| \cdot \Delta_i \text{ for all } S \text{ s.t. } \pi_i(S) = [\underline{x}_i, \overline{x}_i].$$

- Indeed, let us assume that for some S with $\pi_i(S) = [\underline{x}_i, \overline{x}_i]$, we have $\overline{y}(S) < \widetilde{y} + |c_1| \cdot \Delta_1 \sum_{i=2}^n |c_i| \cdot \Delta_i$.
- Since $\overline{y}(S) \stackrel{\text{def}}{=} \sup\{f(x_1, \dots, x_n) : (x_1, \dots, x_n) \in S\},$ this means that for all $x \in S$:

$$f(x_1,\ldots,x_n) \leq \overline{y}(S) < \widetilde{y} + |c_1| \cdot \Delta_1 - \sum_{i=2}^n |c_i| \cdot \Delta_i.$$

• By definition of $f(x_1, \ldots, x_n)$, this means that

$$\widetilde{y} + \sum_{i=1}^{n} c_i \cdot \Delta x_i < \widetilde{y} + |c_1| \cdot \Delta_1 - \sum_{i=2}^{n} |c_i| \cdot \Delta_i.$$

Decision Making:					
De	Decision Making				
Case of Twin Uncertainty					
Oı	Our Main Idea				
This Idea Is Consistent					
Towards Applications					
Case of Interval					
Need for Twin Interval					
Oı	ur Main Re	esult			
	Home Page				
	Title Page				
	44	••			
	•				
	Page 13 of 17				
	Go Back				
	Full Screen				
	Close				
	Quit				

13. Proof: First Part (cont-d)

• So,
$$\sum_{i=1}^{n} c_i \cdot \Delta x_i < |c_1| \cdot \Delta_1 - \sum_{i=2}^{n} |c_i| \cdot \Delta_i$$

• Here,
$$\sum_{i=2}^{n} c_i \cdot \Delta x_i \ge -\sum_{i=2}^{n} |c_i| \cdot \Delta_i$$
, hence

$$-\sum_{i=2}^{n} c_i \cdot \Delta x_i \le \sum_{i=2}^{n} |c_i| \cdot \Delta_i.$$

• By adding these two inequalities, we conclude that

$$c_1 \cdot \Delta x_1 < |c_1| \cdot \Delta_1$$

- Since $\pi_1(S) = [\underline{x}_1, \overline{x}_1] = [\widetilde{x}_1 \Delta_1, \widetilde{x}_1 + \Delta_1]$, there is $x \in S$ for which $\Delta x_1 = \Delta_1 \cdot \operatorname{sign}(c_1)$.
- But for this x, we have $c_1 \cdot \Delta_1 = |c_1| \cdot \Delta_1$, a contradiction.
- So, the desired inequality is proven.

14. Proof: Second Part

• To complete the proofs, we need to show that for some set S with $\pi_i(S) = [\underline{x}_i, \overline{x}_i]$, we have

$$\overline{y}(S) \le \widetilde{y} + |c_1| \cdot \Delta_1 - \sum_{i=2}^n |c_i| \cdot \Delta_i$$

• As such S, let us take
$$S = \bigcup_{i=1}^{n} S_i$$
, where
 $S = \{x \in A, x \in$

$$S_i = \{x : |\Delta x_1| \le \Delta_1 \& \Delta x_j = -\Delta_j \cdot \operatorname{sign}(c_j) \text{ for all } j \ne i\}$$

- Here, $\pi_i(S_i) = [\underline{x}_i, \overline{x}_i]$, so $\pi_i(S) = [\underline{x}_i, \overline{x}_i]$ for all *i*.
- For every i and for every $x \in S_i$, we have

$$f(x_1,\ldots,x_n) = \widetilde{y} + \sum_{j=1}^n c_j \cdot \Delta x_j = c_i \cdot \Delta x_i - \sum_{j \neq i} |c_j| \cdot \Delta_j.$$

15. Proof: Second Part (cont-d)

• Reminder: for every $x \in S_i$, we have

$$f(x_1,\ldots,x_n) = \widetilde{y} + \sum_{j=1}^n c_j \cdot \Delta x_j = c_i \cdot \Delta x_i - \sum_{j \neq i} |c_j| \cdot \Delta_j.$$

• Since $c_i \cdot \Delta x_i \le |c_i| \cdot \Delta_i$ we get

$$f(x_1,\ldots,x_n) \leq |c_i| \cdot \Delta_i - \sum_{j \neq i} |c_j| \cdot \Delta_j = 2|c_i| \cdot \Delta_i - \sum_{j=1}^n |c_j| \cdot \Delta_j.$$

• We know that $|c_i| \cdot \Delta_i \leq |c_1| \cdot \Delta_1$ – this is how we selected x_1 ; thus,

$$f(x_1,\ldots,x_n) \leq 2|c_1|\cdot\Delta_1 - \sum_{j=1}^n |c_j|\cdot\Delta_j = |c_1|\cdot\Delta_1 - \sum_{j\neq i} |c_j|\cdot\Delta_j.$$

- The result is proven.
- For y^+ , the proof is similar.

16. Acknowledgements

This work was supported in part:

- by the National Science Foundation grants
 - HRD-0734825 and HRD-1242122
 (Cyber-ShARE Center of Excellence) and
 DUE-0926721, and
- by an award from Prudential Foundation.

