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Decision Making: . ..

1. Decision Making: General Idea

e According to the decision theory:

— a reasonable person should select an alternative a
— for which an appropriate objective function u(a) —
called utility — attains its largest possible value.

e The utility function is usually selected in such a way
that:

— if for some action a, we know the probabilities p; of
different outcomes o;,

— then the utility of a is equal to the expected value
n
of the utilities: u(a) = > p; - u(0;).
i=1

e Such a utility function is determined uniquely modulo
a linear transformation

u(a) = u'(a) =k -u(a) + £, where k > 0.




2.

Decision Making Under Interval Uncertainty

e For some actions, we have no information about the
probabilities of different outcomes o;.

e In this case, all we know about the expected utility
u(a) is that it is in the interval [u(a),@(a)], where

u(a) = minu(o;) and u(a) = maxu(o;).
1 1
e To make decisions under such interval uncertainty, we
must, in particular, we able to compare:

— such actions with interval uncertainty with
— actions for which we know the expected utility u(a).
e Thus, we need to be able to assign, to each interval
[u(a),w(a)], an equivalent utility value u(a).

e A way to assign such an equivalent utility value was
proposed by a Nobel Prize winner Leo Hurwicz:

u(a) = a-ula) + (1 —a) - u(a).
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3. Decision Making Under Interval Uncertainty
(cont-d)

Case of Twin Uncertainty

e Reminder: u(a) = a-u(a) + (1 — «) - u(a).
e Here, a € [0,1] describes the optimism level of the
decision maker:
e & = 1 means that the decision maker only takes
into account the best-case scenario,

e o = 0 means that only the worst-case scenario is
taken into account, and

e a € (0,1) means that both best-case and worst-case
scenarios are taken into account.

e [t turns out that the Hurwicz assignment is invariant
relative to linear transformations of utility.

e [t is actually the only invariant assignment.




4. Case of Twin Uncertainty
e In practice, sometimes, we do not know the exact val- Our Main Idea
ues of u(a) and u(a).

e For example, we may only know the bounds on each of
these bounds:

— we know that u(a) € [u(a),u"(a)] and
— we know that that w(a) € [~ (a),u"(a)].
e Such a situation is known as a twin interval.

e How can we make decisions under such twin interval
uncertainty?




5.

Our Main Idea

e Our main idea is to use Hurwicz assignment several
times.

e Specifically, for the lower bound u(a), all we know that
it is in the interval [u™(a), u*(a)].

e According to the Hurwicz assignment, this is equiva-
lent to having u(a) = a-u*(a) + (1 — a) - u (a).

e Similar, for [z~ (a),u " (a)], we conclude that the upper

bound is equivalent to @(a) = a-u*(a)+(1—a)-u (a).

e Thus, the original twin interval is equivalent to the
interval [u(a),u(a)].

e For this interval, the Hurwicz assignment produces an
equivalent value

uw(a) =a-a(a) + (1 —a) - ula) =

20" (a)+a-(1—a) T (a)+a-(1—a)u’ (a)+(1—a)*u (a).

This Idea Is Consistent




6.

This Idea Is Consistent
e Alternatively, we can consider the situation differently:
namely, we consider the actual interval.

e The smallest possible interval — in terms of component-
wise order — is [u”(a),u (a)].

e The largest possible interval is [ut(a),u " (a)].
e For the smallest interval, Hurwicz’s equivalent u~ (a) is
u(a)=a-u (a)+(1—a) u (a).

e For the largest interval, the equivalent utility is
ut(a)=a-ut(a)+ (1 —a) - u'(a).

e Thus, possible values of utility form an interval
[u(a), u™(a)].

e For this interval, the Hurwicz equivalent value is
a-ut(a)+ (1 —a)-u (a), same as before.

Towards Applications




7.

Towards Applications

e Some physical quantities we can measure directly.

e In many practical situations, we are interested in a
quantity y which is difficult to measure directly.

e To estimate the values of such a quantity, a natural
idea is:
— find easier-to-measure quantities x4, ..., z, related
to y by a known dependence y = f(x1,...,x,),
— and then use the results z; of measuring x; to com-

pute the estimate y = f(Z1,...,Z,).

e Often, the only info that we have about each measure-

def ~ .
ment error Ax; = x; — x; is the upper bound A;:
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8.

Case of Interval Uncertainty

e In this case, the only information that we have about
the actual (unknown) value z; is that

e Usually, we do not know the dependence between x;
(and we do not even know if there is a dependence).

e The traditional interval approach to this situation is to
conclude that y belongs to the range

def _
y = {f(@r,. . 20) @i € [z, Tl )

e However, in reality, the range [y,7] depends on the

possible dependence between the variables x;.
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9.

Need for Twin Interval Uncertainty
o In general, y = inf{f(x1,...,2,) : (21,...,2,) € S}
and 7 = sup{f(x1,...,2,) : (x1,...,2,) € S}, where:

— for every 1,
— the projection 7;(S) on the i-th axis coincides with
[£i7 EZ]
e For different sets .S, we have, in general, different values
y and 7.

o It is therefore desirable to compute the ranges [y, y™]
and [, 7 7] of the corresponding values.

e In other words, it is desirable to compute the corre-
sponding twin interval.

e Here, y= and 7y are the endpoints of the range y,
which can computed by the usual interval techniques.

e So, the question is how to compute g+ and y .

Our Main Result
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10. Owur Main Result

e We consider a practically important case when terms
quadratic in Ax; can be safely ignored; in this case:

n
~ of ~
Ay=1y—y= ;ci - Ax;, where ¢; = a%(xl, ey Tp).
e In turns out that in this case,
n
g =y+ Zmax (leil - Z lei| - A;) and
=1
n
yr=7- 2max (lei| - A) + Z |ci] -
i=1

e In particular, this means that the sum, product, etc.,
of two intervals is now viewed as a twin interval.

e We can then use formulas for decision making under
twin interval uncertainty to make decisions.




11. Proof: Main Ideas

e Reminder: 7~ = inf{y(S) : m;(S) = [z;,T;] for all i},
where 7(5) o sup{f(z1,...,x,) : (x1,...,2,) € S}
e Here, f(x1,...,2,) =y + Zn:lci - Ax; and
Ax; € [—A;, Ayl
e Without losing generality, we can assume that

mZaX(|cZ| . Az) = |Cl| . Al.

e In this case, the desired formula takes the form

n
Uy =y+lal-A— Z leil - A

1=2




12. Proof: First Part

e Let us first prove, by contradiction, that
y(S) > §+|C1|-A1—Z lci|-A; for all S s.t. m;(S) = [z;, T
i=2

e Indeed, let us assume that for some S with m;(S5) =

[z;,T;], we have J(S) <y + |c1| - A1 = > |ei| - A
i=2

e Since 7(9) o sup{f(x1,...,x,) : (x1,...,2,) € S},

this means that for all z € S:

n

flay,. . wn) STS) < T+ el - Ay =D el - A

1=2

e By definition of f(z1,...,2,), this means that

n

ﬂ+ZcZ~-Aaji<§+|cl|-A1—Z|Ci|-Ai.




13. Proof: First Part (cont-d)
n n
e So, ZCZ' Ax; < |Cl| A — Z |Cz| WAVE
i=1 i=2

n n
e Here, Y ¢; - Ax; > — > |a| - A;, hence
i=2 i=2

n n
1=2 1=2

e By adding these two inequalities, we conclude that
Ccy- AZIJl < |Cl| . Al.
e Since m(5) = [z1,71] = [21 — A1, 71 + A4, there is
x € S for which Azy = Ay - sign(cy).
e But for this z, we have ¢;-A; = |¢1|-Aq, a contradiction.

e So, the desired inequality is proven.




14. Proof: Second Part

e To complete the proofs, we need to show that for some
set S with m;(S) = [z;,T;], we have

U(S) <P+l A=) el - A

1=2

e As such S, let us take S = |J S;, where
i=1
Si ={z|Azy| < Ay & Azxj = —Aj-sign(c;) for all j # i}
e Here, m;(S;) = [z;, T, so mi(S) = [z;,T;] for all i.

e For every ¢ and for every = € S;, we have

f(xl,...,xn) zﬂ—l—ch-Aa:j :Ci'Axi_Z|cj|'Aj-

j=1 j#i




15. Proof: Second Part (cont-d)

e Reminder: for every x € .S;, we have

flz, ... x) zﬂ—l—ch-ij = ci-Axi—Z|cj|-Aj.

j=1 j#i

e Since ¢; - Ax; < |¢;| - A; we get

n
Flan, . m) < lal- A=) oA = 2]a|- A=) lej|-A;.
J#i j=1
e We know that |¢;| - A; < |e1] - Ay — this is how we
selected x1; thus,

n
Flan . an) < 20en|-M=Ylel-Ay = [er]- A=Y |ej|-A;.
j=1 j#i
e The result is proven.

e For gﬂ the proof is similar.
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