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1 Calculate the Number of Zeros

The logarithmic integral (the argument principle)

Let D ⊂ C be a bounded domain with piecewise smooth boundary,
∂D. For an analytic function f : D → C, with no zeros on the
boundary, the number of zeros in D is given by

1

2π

∫
∂D

f ′(z)

f (z)
dz .

This gives us the number of zeros for an analytic function in one
variable.

For multiple complex variables we need a more general formula.
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1 Calculate the Number of Zeros

Multidimensional logarithmic integral

Let D ⊂ Cn be a bounded domain with piecewise smooth
boundary, ∂D. For an analytic function f : D → Cn, with no zeros
on the boundary, the number of zeros in D is given by

(n − 1)!

(2πi)n

∫
∂D

1

|f |2n
n∑

j=1

(−1)j−1f jdf [j] ∧ df .

This is given in the terms of differential forms.

To be able to evaluate it on a computer we need to rewrite it.
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1 Calculate the Number of Zeros

Our domain D will be a box in C2.

The boundary will then be given by 8 cuboids.

Multidimensional logarithmic integral

(−1)k−1

4π2

∫
∂Di

det Jf det J[k]
|f |4

dz[k]dz1dz2

Now all parts of the integral can be evaluated on a computer.
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Multidimensional logarithmic integral

(−1)k−1

4π2

∫
∂Di

det Jf det J[k]
|f |4

dz[k]dz1dz2

We will make it simple

base · height
(volume · height)
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Calculate the Integral

A simple example

Calculate the number of zeros of f (z1, z2) = (z1, z2) in
D = ([−1, 1] + i [−1, 1])× ([−1, 1] + i [−1, 1]).

Calculate the first integral.

$$ ./integrate -1 -1 -1 1 -1 1 -1 1 0 0.125

Time used: 15.948 msec

Integral value: ([ 0.080801, 0.187438],[ -0.025834, 0.025834])

If we calculate all 8 integrals and sum them up we get

Integral Value: ([ 0.646407, 1.499505],[ -0.206825, 0.206825]),

so the function must have exactly 1 zero in the domain.
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Calculate the Integral

A simple example

Calculate the number of zeros of f (z1, z2) = (z1, z2) in
D = ([−1, 1] + i [−4, 4])× ([−4, 4] + i [−4, 4]).

Calculate the number of zeros.

$$ ./integrate -1 -1 -4 4 -4 4 -4 4 0 0.125

Time used: 265814 msec

Integral value: ([ 0.324082, 0.448745],[ -0.113794, 0.113794])

From having previously taken less than 1/10th of a second it now
takes more than 4 minutes.

The integral can be very hard to evaluate!
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2 Exhaustive Search

Idea: If we know the number of zeros and are able to find that
many, we know we have found them all.

To find the zeros we will perform a random search.

This will be done using a combination of Newton’s method and
the validated version of Newton’s method.



2 Exhaustive Search

Idea: If we know the number of zeros and are able to find that
many, we know we have found them all.

To find the zeros we will perform a random search.

This will be done using a combination of Newton’s method and
the validated version of Newton’s method.



2 Exhaustive Search

Idea: If we know the number of zeros and are able to find that
many, we know we have found them all.

To find the zeros we will perform a random search.

This will be done using a combination of Newton’s method and
the validated version of Newton’s method.
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Algorithm for finding zeros

1 Generate a random point in D.

2 Perform a couple of Newton iterations.

3 If the new point is still in D, create a small box containing it.

4 Apply Newton’s validated method to this box.
5 If the box is determined to contain a unique zero.

1 Check if it is disjoint to all previous found zeros.
2 If so, add it to the list of zeros.

This can be iterated until all zeros are found.

In practice we will perform Newton’s method to several points, and
then check them all.
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Examples

Function

f (z1, z2) =(sin(z1) + z21 + ez2 − cos(2z2), cos(z1) + z32 + e2z2 − 2)

D =([−1, 1] + i [−1, 1])× ([−1, 1] + i [−1, 1])

The integral

Integral value = ([ 2.668302, 4.593785],[ -0.772578, 0.776699])

The function has 3 or 4 zeros.

Exhaustive search

Generate 50 random points and perform 15 iterations of
Newton. (0.1 seconds)

Perform Newtons interval method on these. (0.05 seconds)

It then finds 4 unique zeros.
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Examples

The next example is taken from physics and describes how
particles react in strong laser fields. The associated functions are

Example

f1(z1, z2) =(ks(z1, z2) + A(z1))2 + 2Ip,

f2(z1, z2) =(pz + A(z2))2 − (ks(z1, z2) + A(z2))2

where

A(z) =A0 cos(ω0z + φ) + A1 cos(ω1z + φ) + A2 cos(ω2z + φ),

ks(z1, z2) =− A′(z2)− A′(z1)

z2 − z1

and

D =([0, 450] + i [0, 450])× ([0, 450] + i [0, 450]).
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240000 points were generated.

Newtons interval method were used on 120000 respectively
240000 of these.

In the first case 79 zeros were isolated, in the second 80.
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Future development

Speed up the integration

Implement higher order methods, the integrand is analytic in 4
real variables.

Split the workload better during parallelization.

Handling of multiple zeros and clusters of zeros

Develop a method for locating such areas.

Use the logarithmic integral for proving the existence of them.
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