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Motivation

(x − 1)2 + (q − 1)2 = 32

−3 ≤ x ≤ 5 ∧ −1 ≤ q ≤ 3
(1)

Parallel robot
Kinematic model: system of equations f (x , q, p) = 0 with

I x ∈ Rn the pose
I q ∈ Rm the command (often m = n)
I p ∈ Rq uncertainties on system parameters
I f (x , q, p) ∈ Rn (as many equations as pose coordinates)

Nominal workspace: W := {(x , q) ∈ Rn × Rm : f (x , q, 0) = 0, g(x , q) ≤ 0}

Goldsztejn et al. (CNRS) SWIM 2016 2 / 13



Motivation

(x − 1)2 + (q − 1)2 = 32

−3 ≤ x ≤ 5 ∧ −1 ≤ q ≤ 3
(1)

Parallel robot
Kinematic model: system of equations f (x , q, p) = 0 with

I x ∈ Rn the pose
I q ∈ Rm the command (often m = n)
I p ∈ Rq uncertainties on system parameters
I f (x , q, p) ∈ Rn (as many equations as pose coordinates)

Nominal workspace: W := {(x , q) ∈ Rn × Rm : f (x , q, 0) = 0, g(x , q) ≤ 0}

Goldsztejn et al. (CNRS) SWIM 2016 2 / 13



Motivation

Direct kinematic problem
q and p fixed, compute xp such that f (xp, q, p) = 0
Square system of equations

I p = 0 =⇒ x0 is a nominal solution
I p 6= 0 =⇒ xp is a perturbed solution

Tolerance analysis
Given ∆ ≥ ‖p‖
Find ε maximal distance between x0 and xp in the workspace

←−−−−− Typical result

ε(p) in addition to ε

Too large p make no sense

⇔ Is ∆ small enough?

⇒ Need to compute a domain for p too
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Motivation

Solved by global optimization?

max
(x0,q0)∈W

f (xp,q,p)=0, ‖p‖≤∆

‖x0 − xp‖ (2)

Make no sense:
Incorrect nominal↔perturbed association
Need initial domain for xp

I Large enough to contain xp
I Small enough to separate different solutions for

fixed q
⇐⇒ Compute ε

⇒ Need a local analysis around nominal solutions
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Kantorovich Theorem (simplified version)

Solve f (x) = 0

Given x0 compute the first Newton step
x1 = x0 + Df (x0)−1f (x0)

Kantorovich constants χ, δ and λ
I χ ≥ ‖Df (x0)−1‖
I δ ≥ ‖Df (x0)−1f (x0)‖ = ‖x1 − x0‖
I λ Lipschitz constant for Df inside B(x0, r+)

with r ≥ 2δ

Kantorovich theorem
2χδλ ≤ 1 implies

I ∃x ∈ B(x0, t∗) with t∗(χ, δ, λ) =
1−
√

1−2δλχ
λχ

∈ [δ, 2δ]

I The solution is unique inside B(x0, 2δ)
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Application to sensitivity analysis: Crude upper bound

Classical trick
Bound on ‖x0 − xp‖ is sought

⇒ Start Newton iterate at a nominal solution for solving the perturbed problem
I x0 satisfies f (x0, q, 0) = 0
I Kantorovich constants are computed for solving f (x , q, p) = 0
⇒ t∗ ≡ upper bound nominal/perturbed solution

Evaluation Kantorovich constants using global optimization
Don’t need to compute every x0 to evaluate Kantorovich constants !

⇒ Worst case constants for all (x , q) and p hold for every nominal solution

χ ≥ max
(x,q)∈W
‖p‖≤∆

‖Dx f (x , q, p)−1‖ δ0 ≥ max
(x,q)∈W
‖p‖≤∆

‖Dx f (x , q, p)−1f (x , q, p)‖

Lipschitz constant: worst case inside B(x0, (2δ0)+) for all (x0, q) ∈ W

2χδ0λ ≤ 1 implies for all ‖p‖ ≤ ∆
every nominal solution has a unique perturbed solution distant of at most 2δ0
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Application to sensitivity analysis: Sharp upper bound

Dependence of the first Newton step wrt ‖p‖
f (x0, q, p) = f (x0, q, 0) + Dpf (x0, q, 0)p + z = Dpf (x0, q, 0)p + z

‖z‖ ≤ 1
2µ‖p‖

2 where µ is a Lipschitz constant for Dpf

(for the whole workspace and all p such that ‖p‖ ≤ ∆)

⇒ ‖Dx f (x , q, p)−1 f (x0, q, p)‖ ≤ ‖Dx f (x , q, p)−1 Dpf (x0, q, 0)‖‖p‖+ 1
2χµ‖p‖

2

Worst case in workspace:

δ1(p) = γ‖p‖+
1
2
χµ‖p‖2 with

γ ≥ max
(x,q)∈W
‖p‖≤∆

‖Dx f (x , q, p)−1Dpf (x , q, 0)‖

Second trick
Kantorovich applies if 2χλ δ(p) ≤ 1 with δ(p) := min{δ0, δ1(p)}

⇒ Choose the perturbation domain so that it applies:

P := {p ∈ Rq : ‖p‖ ≤ ∆ , 2χλδ(p) ≤ 1}

Goldsztejn et al. (CNRS) SWIM 2016 7 / 13



Application to sensitivity analysis: Sharp upper bound

Dependence of the first Newton step wrt ‖p‖
f (x0, q, p) = f (x0, q, 0) + Dpf (x0, q, 0)p + z = Dpf (x0, q, 0)p + z

‖z‖ ≤ 1
2µ‖p‖

2 where µ is a Lipschitz constant for Dpf

(for the whole workspace and all p such that ‖p‖ ≤ ∆)

⇒ ‖Dx f (x , q, p)−1 f (x0, q, p)‖ ≤ ‖Dx f (x , q, p)−1 Dpf (x0, q, 0)‖‖p‖+ 1
2χµ‖p‖

2

Worst case in workspace:

δ1(p) = γ‖p‖+
1
2
χµ‖p‖2 with

γ ≥ max
(x,q)∈W
‖p‖≤∆

‖Dx f (x , q, p)−1Dpf (x , q, 0)‖

Second trick
Kantorovich applies if 2χλ δ(p) ≤ 1 with δ(p) := min{δ0, δ1(p)}

⇒ Choose the perturbation domain so that it applies:

P := {p ∈ Rq : ‖p‖ ≤ ∆ , 2χλδ(p) ≤ 1}

Goldsztejn et al. (CNRS) SWIM 2016 7 / 13



Application to sensitivity analysis: Sharp upper bound

Dependence of the first Newton step wrt ‖p‖
f (x0, q, p) = f (x0, q, 0) + Dpf (x0, q, 0)p + z = Dpf (x0, q, 0)p + z

‖z‖ ≤ 1
2µ‖p‖

2 where µ is a Lipschitz constant for Dpf

(for the whole workspace and all p such that ‖p‖ ≤ ∆)

⇒ ‖Dx f (x , q, p)−1 f (x0, q, p)‖ ≤ ‖Dx f (x , q, p)−1 Dpf (x0, q, 0)‖‖p‖+ 1
2χµ‖p‖

2

Worst case in workspace:

δ1(p) = γ‖p‖+
1
2
χµ‖p‖2 with

γ ≥ max
(x,q)∈W
‖p‖≤∆

‖Dx f (x , q, p)−1Dpf (x , q, 0)‖

Second trick
Kantorovich applies if 2χλ δ(p) ≤ 1 with δ(p) := min{δ0, δ1(p)}

⇒ Choose the perturbation domain so that it applies:

P := {p ∈ Rq : ‖p‖ ≤ ∆ , 2χλδ(p) ≤ 1}

Goldsztejn et al. (CNRS) SWIM 2016 7 / 13



Application to sensitivity analysis: Sharp upper bound

Dependence of the first Newton step wrt ‖p‖
f (x0, q, p) = f (x0, q, 0) + Dpf (x0, q, 0)p + z = Dpf (x0, q, 0)p + z

‖z‖ ≤ 1
2µ‖p‖

2 where µ is a Lipschitz constant for Dpf

(for the whole workspace and all p such that ‖p‖ ≤ ∆)

⇒ ‖Dx f (x , q, p)−1 f (x0, q, p)‖ ≤ ‖Dx f (x , q, p)−1 Dpf (x0, q, 0)‖‖p‖+ 1
2χµ‖p‖

2

Worst case in workspace:

δ1(p) = γ‖p‖+
1
2
χµ‖p‖2 with

γ ≥ max
(x,q)∈W
‖p‖≤∆

‖Dx f (x , q, p)−1Dpf (x , q, 0)‖

Second trick
Kantorovich applies if 2χλ δ(p) ≤ 1 with δ(p) := min{δ0, δ1(p)}

⇒ Choose the perturbation domain so that it applies:

P := {p ∈ Rq : ‖p‖ ≤ ∆ , 2χλδ(p) ≤ 1}

Goldsztejn et al. (CNRS) SWIM 2016 7 / 13



Parametric Kantorovich theorem

Parametric Kantorovich constants χ, δ, γ, λ and µ

χ ≥ max
(x,q)∈W
‖p‖≤∆

‖Dx f (x , q, p)−1‖

δ0 ≥ max
(x,q)∈W
‖p‖≤∆

‖Dx f (x , q, p)−1f (x , q, p)‖

γ ≥ max
(x,q)∈W
‖p‖≤∆

‖Dx f (x , q, p)−1Dpf (x , q, 0)‖

∀(x0, q)∈ W, ∀p∈ B∆, ∀x ′, x ′′∈ B(x0, (2δ0)+), ‖Dx f (x ′, q, p)−Dx f (x ′′, q, p)‖≤ λ‖x ′−x ′′‖

∀(x , q) ∈ W, ∀p′, p′′ ∈ B∆, ‖Dpf (x , q, p′)− Dpf (x , q, p′′)‖ ≤ µ‖p′ − p′′‖

Statement

δ1(p)=γ‖p‖+ 1
2χµ‖p‖

2, δ(p) = min{δ0, δ1(p)}, P={p ∈ Rq :‖p‖≤∆ , 2χλδ(p) ≤ 1}.

∀p ∈ P, ∀(x , q) ∈ W, ∃!xp ∈ B(x , ε), f (xp, q, p) = 0
with ε = min{2δ0,

1
χλ
}. Furthermore, ‖x − xp‖ ≤ ε(p) := t∗(χ, δ(p), λ)
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The PRRP robot

Description

f (x , q, p) = (x − a− p1)2 + (q − b − p2)2 − (l + p3)2, a = 1, b = 1 and l = 3

W = {(x , q) ∈ R2 : f (x , q, p) = 0 ∧ x ∈ [−3, 5] ∧ q ∈ [−1, 3]}
A priori maximal perturbation: ∆ = 0.3

Parametric Kantorovich constants definition

χ ≥ max
(x,q)∈W
‖p‖≤∆

1
2 |x − a− p1|

δ ≥ max
(x,q)∈W
‖p‖≤∆

| (x − a− p1)2 + (q − b − p2)2 − (l + p3)2 |
2 |x − a− p1|

γ ≥ max
(x,q)∈W
‖p‖≤∆

|x − a− p1| + |q − b − p2| + |l + p3|
|x − a− p1|

.

f quadratic wrt x and p⇒ Lipschitz constants λ = 2 and µ = 2
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The PRRP robot
Parametric Kantorovich constants computation

Nonlinear non-smooth problems

IBEXa [CJ09, TANC11, ATNC14]: branch and bound + numerical constraint
programming + linearization: χ = 0.26, δ0 = 1.1 and γ = 3.90 (less than 0.01s)

aAvailable at http://www.ibex-lib.org/

Bounds

δ1(p) = 3.9p + 0.26p2

P = {p ∈ R3 : ‖p‖ ≤ 0.24}
ε = 1.93

ε(p) = 1.93(1−
√

1− 1.04δ(p))

ε(p) ≈ γ‖p‖ for ‖p‖ � 1
(correct asymptotic is 3.82→ overestimated)
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The 3RPR robot

n = m = 3

+ Parameters grouped into two classes

+ Orientation and position errors

Constants computed in less than a
minute

Perturbations allowed ≤ 0.002

ε = 0.03

(p1 − x1)2 + (p2 − x2)2 − (p3 + q1)2(
L + p4 − x1 − l sin(

π

6
+ x3)

)2
+
(

p5 − x2 + l cos(
π

6
+ x3)

)2
− (p6 + q2)2(L

2
+ p7 − x1 − l cos(x3)

)2
+
(L
√

3
2

+ p8 − x2 − l sin(x3)
)2
− (p9 + q3)2,

with L = 1 and l = 0.5
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The 3RPR robot: Minibex code for χ
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Conclusion

Strengths
Parametric Kantorovich theorem

I Solve 5 global optimization problems
⇒ Parameter domain for which perturbed solution remains uniquely defined
⇒ Upper bound on the nominal to perturbed solution distance

Applies not only to one solution, but to a manifold of solutions

Weaknesses
Timing increases with manifold dimension

! Formal inverse is used
I Not applicable for n ≥ 4 (robots can have n = 6)

Parameter domain decreases with manifold dimension
I Up to now, 0.002 meters for 1 meter robot is ok

Future work

Use interval matrix inverse (e.g., M(x)A = I instead of M(x)−1 in optimization
problems)

Test on robots with more dofs
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