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Context

We consider a continuous-time dynamical system :

ẋ = f (x), f : Rn → Rn,

and an exponentially stable point x?.



Context

Exponential Stability

All the trajectories starting inside a neighborhood A(x?) of x?

converge to x? faster than an exponential decay :

∀x0 ∈ A(x?), ∃t0, ∀t ≥ t0, ‖x(t)− x∗‖ ≤ α‖x0 − x∗‖e−βt .

for some nonnegative constants α, β.



Context

Exponential stability is proven by studying the sign of the
eigenvalues of Df (x?), the Jacobian matrix of f at the fixpoint.

These eigenvalues also characterize the attraction strength
(β).
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Overall Objective

Build a subset of A(x?) in a fast (polynomial time) and
guaranteed way.

The subset must also be a positive invariant.

Our approach is based on Lyapunov theory.
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Lyapunov Functions

A Lyapunov function is locally an energy-like function
V : Rn → R such that

V (x?) = 0

and there exists an open neighborhood N of x∗ such that

∀x ∈ N\{x?}
{

V (x) > 0
V̇ (x) < 0 with V̇ (x) := d

dt V (x(t)).



Lyapunov Functions

There always exists 1 a Lyapunov function of the form

V (x) = (x − x?)T P(x − x?)

where P is a SPD (symmetric positive definite) matrix.

And we know how to build it.

In short,
V (x) = ‖x − x?‖P .

1. In the case of an exponentially stable point.
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Lyapunov Functions

Then, all the level sets of V inside N are attracting, and even
more, positive invariants.

Problem : We know V but we don’t know N .
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In fact, since
V (x) = ‖x − x?‖P

∀x ∈ N\{x?} V (x) > 0 X

∀x ∈ N\{x?} V̇ (x) < 0 ?

Only the second property needs to be enforced.

Note :

V̇ (x) =
d
dt

V (x(t)) = ∇V (x)T f (x) = 2(x − x?)T Pf (x)
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Concrete Objective

Our goal is to

I Build a neighborhood N where V̇ < 0
I Build a P-ellipsoid inside N

Warning : N is not
necessarily inside the
basin !

. . . unless N is a P-ellipsoid, in which case we kill two birds
with one stone.

difficult with interval methods.
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Concrete Objective
Interval approach

Set N := [x ] (an arbitrary box around x?) and prove :

∀x ∈ [x ], x 6= x?, V̇ (x) = (x − x?)T Pf (x) < 0.

Problem : naively applying interval arithmetic does not work
since V̇ (x?) = 0.
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Concrete Objective

Ratschan & She proposed to “remove” a small region T (called
target) around x?.

If ∀x 6∈ T , V̇ (x) < 0,

all trajectories in a level set inside [x ] reach the target.

Problem : convergence to x? is not proven.
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Concrete Objective

Delanoue, Jaulin and Cottenceau prove

∀x 6= x?, V̇ (x) < 0

by checking the concavity of V̇

, i.e., by checking

∀x ∈ [x ], D2V̇ (x) is ND (negative definite).

Uncertainty on x? can easily be taken into account with a
“thick” function

V̇ : x 7→ (x − [x?])T Pf (x)

Problem :

I Works as a test (yes/no needs heuristic)
I Resorts to second-order derivatives.
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Overview

Contribution.

We propose two algorithms :

I The first also works as a test but uses only 1st order
derivatives

I The second uses 2nd order derivative but always gives a
solution (under mild conditions)

I Both work directly with ellipsoids (inputs and outputs are
radii)
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Testing a Neighborhood

First, we know from the fundamental theorem of analysis that,
for all x ∈ Rn there exists a matrix S(x) such that

f (x) = f (x?) + S(x)(x − x?) = S(x)(x − x?)

and
∀[x ] ∈ IRn S([x ]) ⊆ Df ([x ]).

Proposition (“Interval Lyapuonv Equation”)

∀x ∈ [x ], define Q(x) as follows :

Q(x) := S(x)T P + PS(x).

If Q([x ]) contains only ND matrices, then N := [x ] is a valid
neighborhood.
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Testing a Neighborhood

Proof :

∀x ∈ [x ], V̇ (x) = 2(x − x?)T Pf (x)

= 2(x − x?)T PS(x)(x − x?)

= (x − x?)T (S(x)T P + PS(x))(x − x?)

(using 2xT Ax = xT (AT + A)x)

= (x − x?)T Q(x)(x − x?)

and since Q(x) is ND by hypothesis, x 6= x? =⇒ V̇ (x) < 0.
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Testing a Neighborhood

Since P satisfies

Df (x?)T P + P Df (x?) ∼ −I

We have
Q(x?) ∼ −I.

So, for sufficiently small boxes [x ], the test will succeed.

We now have to build a P-ellipsoid inside [x ].

And take into account the uncertainty on x?.
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Building an Ellispoid

So we have first to find the largest value of r such that

[x ] ⊇ [x?] +� (E(0, r))
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And then build the set

S :=
⋂

x∈[x?]

x +� (E(0, r))

which is attracting.

Note :

I S may not be invariant
I S may even not contain x? !
I But will be in practice (as

[x?] is very small)

Problem : S is not an ellipsoid (and difficult to compute).
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Building an Ellispoid

Idea : we proceed in the other way round.

We start from a candidate ellipsoid

E(x̂ , r̂)

with x̂ ∈ [x?] and build the box [x ] accordingly.



Building an Ellispoid

Define

[∆] :=
∥∥∥[x?]− x̂

∥∥∥
P
.

Thanks to the triangular inequality, we have :

I E(x̂ , r̂) ⊆ E(x?, r̂ + ∆).
I If ∆ ≤ r̂ then x? ∈ E(x̂ , r̂).
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First Algorithm

Summary
∆ ≥

∥∥∥[x?]− x̂
∥∥∥

P
,

[x ] ⊇ [x?] +�
(
E(0, r̂ + ∆)

)
,

[J] ⊇ [Df ]([x ]),

[Q] ⊇ [J]T P + P[J].

If [Q] is ND and ∆ ≤ r̂ then

x? ∈ E(x̂ , r̂) ⊆ E(x?, r̂ + ∆) ⊆ A(x?).
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Building a Neighborhood

We want to build a domain N around x? where the matrix
function Q(x) = S(x)T P + PS(x) is ND.

Since Q(x?) ∼ −I, we replace the condition

Q(x) ND

by the sufficient condition

‖Q(x) + I‖ < 1.

We can then linearize this relation to obtain a condition

‖x − x̂‖P ≤ . . .

using bounds L and L′ on the P-norm Lipsichitz constants of S
and ST , on an initial arbirary box [x ].
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The constants in the equivalence relation between the∞-norm
and P-norm involve the two extremal eigenvalues λ and λ of P.

We need an algorithm for rigorously bounding eigenvalues
(e.g. interval variant of Gerschgorin’s circles)



Building a Neighborhood

The constants in the equivalence relation between the∞-norm
and P-norm involve the two extremal eigenvalues λ and λ of P.

We need an algorithm for rigorously bounding eigenvalues
(e.g. interval variant of Gerschgorin’s circles)



Outline
Introduction

Context

Overall Objective

Lyapunov Functions

Concrete Objective

Contribution

Overview

Testing a Neighborhood

Building an Ellispoid

First Algorithm

Building a Neighborhood

Second Algorithm

Conclusion



Second Algorithm
Summary

∆ ≥
∥∥∥[x?]− x̂

∥∥∥
P
,

ν ≥

√
nλ
λ

∥∥∥[Q?] + I
∥∥∥
∞

with


[Q?] ⊇ [J∗]T P + P[J∗]

[J?] ⊇ [Df ]([x?])

[x ] ⊇ [x?] +�
(
E(0, r̂ + ∆)

)
,

ř :=
1− ν

(L + L′) λ
−∆.

If ν < 1 and min{r̂ , ř} ≥ ∆ then

x? ∈ E(x̂ ,min{r̂ , ř}) ⊆ A(x?).
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ř :=
1− ν

(L + L′) λ
−∆.

If ν < 1 and min{r̂ , ř} ≥ ∆ then
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Conclusion

I We can build a certified attraction region around a fixpoint
+ Even if the fixpoint is approximately known
+ Only first-order derivative are necessary
+ Experiments show that the size of the region is large

compared to existing approaches (see research report)
+ The algorithm scales up
- Invariance is lost in theory (but not in practice)
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Thanks !



Algebraic approach

Assume f is polynomial. Fix r > 0.

If there exists a polynomial p(x) such that

∀x ∈ Rn, p(x) ≥ 0 ∧ − (x − x?)T Pf (x)︸ ︷︷ ︸
V̇ (x)

+p(x)
(

V (x)−r
)
≥ 0

then E(x?, r) is a correct answer.

Tractable with LMI solver if we impose sum of square
decomposition in place of ≥ 0.

Problem :

I Polynomiality assumption
I LMI solver not robust with respect to rouding errors
I Cannot handle uncertainty on x? (x? ∈ [x?])
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Let us consider first a simpler case of q : R→ R.

Assume that we have :
I a point x? s.t. q(x?) ∼ −1
I a Lipschitz bound L on q over an (arbirary initial) set N ′ :

∀x , y ∈ N ′ ‖q(x)− q(y)‖ ≤ L‖x − y‖.
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Then (
x ∈ N ′ ∧ ‖x − x?‖ < 1

L
q(x?)

)
=⇒q(x) < 0



Generalization

Q(x) = S(x)T P + PS(x)

We need Lipschitz constants for S and ST on an initial domain

N ′ := ‖x − x̂‖ ≤ r̂

and a bound ν on ‖Q(x?) + I‖. Then :
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The neighborhood is therefore characterized by :

‖x − x̂‖ ≤ min(ř , r̂)

with
ř :=

1− ν
(L + L′) λ

−∆.

This is actually true for any norm.

Since we prefer a P-ellipsoids, all the bounds on the right side
should be with the P-norm :

I N ′ −→ ok (evaluate the Lipschitz constants on the hull [x ])
I ∆ −→ ok
I ν −→ from

(
Q([x?]) + I

)
+ norm equivalence

I L and L′ −→ from ∂2fi
∂xj∂xk

([x ]) + norm equivalence

I P −→ from a direct formula
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