
COMPUTING ATTRACTING ELLIPSOIDS FOR

NONLINEAR SYSTEMS USING AN INTERVAL

LYAPUNOV EQUATION

SWIM’2016

Léopold Houdin, Alexandre Goldsztejn, Gilles Chabert,
Frédéric Boyer

Juin 2016



Outline
Introduction

Context

Overall Objective

Lyapunov Functions

Concrete Objective

Contribution

Overview

Testing a Neighborhood

Building an Ellispoid

First Algorithm

Building a Neighborhood

Second Algorithm

Conclusion



Context

We consider a continuous-time dynamical system :

ẋ = f (x), f : Rn → Rn,

and an exponentially stable point x?.



Context

Exponential Stability

All the trajectories starting inside a neighborhood A(x?) of x?

converge to x? faster than an exponential decay :

∀x0 ∈ A(x?), ∃t0, ∀t ≥ t0, ‖x(t)− x∗‖ ≤ α‖x0 − x∗‖e−βt .

for some nonnegative constants α, β.



Context

Exponential stability is proven by studying the sign of the
eigenvalues of Df (x?), the Jacobian matrix of f at the fixpoint.

These eigenvalues also characterize the attraction strength
(β).



Context

Exponential stability is proven by studying the sign of the
eigenvalues of Df (x?), the Jacobian matrix of f at the fixpoint.

These eigenvalues also characterize the attraction strength
(β).



Context

However, the linearization gives no information about the size
of the basin of attraction

f (x) Df (0) A(0)

c3x3 − cx −c (−1
c ,

1
c )

x3

c
− cx −c (−c, c)



Context

However, the linearization gives no information about the size
of the basin of attraction

f (x) Df (0) A(0)

c3x3 − cx −c (−1
c ,

1
c )

x3

c
− cx −c (−c, c)



Outline
Introduction

Context

Overall Objective

Lyapunov Functions

Concrete Objective

Contribution

Overview

Testing a Neighborhood

Building an Ellispoid

First Algorithm

Building a Neighborhood

Second Algorithm

Conclusion



Overall Objective

Build a subset of A(x?) in a fast (polynomial time) and
guaranteed way.

The subset must also be a positive invariant.

Our approach is based on Lyapunov theory.



Overall Objective

Build a subset of A(x?) in a fast (polynomial time) and
guaranteed way.

The subset must also be a positive invariant.

Our approach is based on Lyapunov theory.



Overall Objective

Build a subset of A(x?) in a fast (polynomial time) and
guaranteed way.

The subset must also be a positive invariant.

Our approach is based on Lyapunov theory.



Outline
Introduction

Context

Overall Objective

Lyapunov Functions

Concrete Objective

Contribution

Overview

Testing a Neighborhood

Building an Ellispoid

First Algorithm

Building a Neighborhood

Second Algorithm

Conclusion



Lyapunov Functions

A Lyapunov function is locally an energy-like function
V : Rn → R such that

V (x?) = 0

and there exists an open neighborhood N of x∗ such that

∀x ∈ N\{x?}
{

V (x) > 0
V̇ (x) < 0 with V̇ (x) := d

dt V (x(t)).



Lyapunov Functions

There always exists 1 a Lyapunov function of the form

V (x) = (x − x?)T P(x − x?)

where P is a SPD (symmetric positive definite) matrix.

And we know how to build it.

In short,
V (x) = ‖x − x?‖P .

1. In the case of an exponentially stable point.



Lyapunov Functions

There always exists 1 a Lyapunov function of the form

V (x) = (x − x?)T P(x − x?)

where P is a SPD (symmetric positive definite) matrix.

And we know how to build it.

In short,
V (x) = ‖x − x?‖P .

1. In the case of an exponentially stable point.



Lyapunov Functions

There always exists 1 a Lyapunov function of the form

V (x) = (x − x?)T P(x − x?)

where P is a SPD (symmetric positive definite) matrix.

And we know how to build it.

In short,
V (x) = ‖x − x?‖P .

1. In the case of an exponentially stable point.



Lyapunov Functions

Then, all the level sets of V inside N are attracting, and even
more, positive invariants.

Problem : We know V but we don’t know N .



Lyapunov Functions

Then, all the level sets of V inside N are attracting, and even
more, positive invariants.

Problem : We know V but we don’t know N .



Lyapunov Functions

In fact, since
V (x) = ‖x − x?‖P

∀x ∈ N\{x?} V (x) > 0 X

∀x ∈ N\{x?} V̇ (x) < 0 ?

Only the second property needs to be enforced.

Note :

V̇ (x) =
d
dt

V (x(t)) = ∇V (x)T f (x) = 2(x − x?)T Pf (x)



Lyapunov Functions

In fact, since
V (x) = ‖x − x?‖P

∀x ∈ N\{x?} V (x) > 0 X

∀x ∈ N\{x?} V̇ (x) < 0 ?

Only the second property needs to be enforced.

Note :

V̇ (x) =
d
dt

V (x(t)) = ∇V (x)T f (x) = 2(x − x?)T Pf (x)



Lyapunov Functions

In fact, since
V (x) = ‖x − x?‖P

∀x ∈ N\{x?} V (x) > 0 X

∀x ∈ N\{x?} V̇ (x) < 0 ?

Only the second property needs to be enforced.

Note :

V̇ (x) =
d
dt

V (x(t)) = ∇V (x)T f (x) = 2(x − x?)T Pf (x)



Lyapunov Functions

In fact, since
V (x) = ‖x − x?‖P

∀x ∈ N\{x?} V (x) > 0 X

∀x ∈ N\{x?} V̇ (x) < 0 ?

Only the second property needs to be enforced.

Note :

V̇ (x) =
d
dt

V (x(t)) = ∇V (x)T f (x) = 2(x − x?)T Pf (x)



Lyapunov Functions

In fact, since
V (x) = ‖x − x?‖P

∀x ∈ N\{x?} V (x) > 0 X

∀x ∈ N\{x?} V̇ (x) < 0 ?

Only the second property needs to be enforced.

Note :

V̇ (x) =
d
dt

V (x(t)) = ∇V (x)T f (x) = 2(x − x?)T Pf (x)



Outline
Introduction

Context

Overall Objective

Lyapunov Functions

Concrete Objective

Contribution

Overview

Testing a Neighborhood

Building an Ellispoid

First Algorithm

Building a Neighborhood

Second Algorithm

Conclusion



Concrete Objective

Our goal is to

I Build a neighborhood N where V̇ < 0
I Build a P-ellipsoid inside N

Warning : N is not
necessarily inside the
basin !

. . . unless N is a P-ellipsoid, in which case we kill two birds
with one stone.

difficult with interval methods.



Concrete Objective

Our goal is to

I Build a neighborhood N where V̇ < 0

I Build a P-ellipsoid inside N

Warning : N is not
necessarily inside the
basin !

. . . unless N is a P-ellipsoid, in which case we kill two birds
with one stone.

difficult with interval methods.



Concrete Objective

Our goal is to

I Build a neighborhood N where V̇ < 0
I Build a P-ellipsoid inside N

Warning : N is not
necessarily inside the
basin !

. . . unless N is a P-ellipsoid, in which case we kill two birds
with one stone.

difficult with interval methods.



Concrete Objective

Our goal is to

I Build a neighborhood N where V̇ < 0
I Build a P-ellipsoid inside N

Warning : N is not
necessarily inside the
basin !

. . . unless N is a P-ellipsoid, in which case we kill two birds
with one stone.

difficult with interval methods.



Concrete Objective

Our goal is to

I Build a neighborhood N where V̇ < 0
I Build a P-ellipsoid inside N

Warning : N is not
necessarily inside the
basin !

. . . unless N is a P-ellipsoid, in which case we kill two birds
with one stone.

difficult with interval methods.



Concrete Objective

Our goal is to

I Build a neighborhood N where V̇ < 0
I Build a P-ellipsoid inside N

Warning : N is not
necessarily inside the
basin !

. . . unless N is a P-ellipsoid, in which case we kill two birds
with one stone.

difficult with interval methods.



Concrete Objective
Interval approach

Set N := [x ] (an arbitrary box around x?) and prove :

∀x ∈ [x ], x 6= x?, V̇ (x) = (x − x?)T Pf (x) < 0.

Problem : naively applying interval arithmetic does not work
since V̇ (x?) = 0.



Concrete Objective
Interval approach

Set N := [x ] (an arbitrary box around x?) and prove :

∀x ∈ [x ], x 6= x?, V̇ (x) = (x − x?)T Pf (x) < 0.

Problem : naively applying interval arithmetic does not work
since V̇ (x?) = 0.



Concrete Objective

Ratschan & She proposed to “remove” a small region T (called
target) around x?.

If ∀x 6∈ T , V̇ (x) < 0,

all trajectories in a level set inside [x ] reach the target.

Problem : convergence to x? is not proven.



Concrete Objective

Ratschan & She proposed to “remove” a small region T (called
target) around x?.

If ∀x 6∈ T , V̇ (x) < 0,

all trajectories in a level set inside [x ] reach the target.

Problem : convergence to x? is not proven.



Concrete Objective

Delanoue, Jaulin and Cottenceau prove

∀x 6= x?, V̇ (x) < 0

by checking the concavity of V̇

, i.e., by checking

∀x ∈ [x ], D2V̇ (x) is ND (negative definite).

Uncertainty on x? can easily be taken into account with a
“thick” function

V̇ : x 7→ (x − [x?])T Pf (x)

Problem :

I Works as a test (yes/no needs heuristic)
I Resorts to second-order derivatives.



Concrete Objective

Delanoue, Jaulin and Cottenceau prove

∀x 6= x?, V̇ (x) < 0

by checking the concavity of V̇ , i.e., by checking

∀x ∈ [x ], D2V̇ (x) is ND (negative definite).

Uncertainty on x? can easily be taken into account with a
“thick” function

V̇ : x 7→ (x − [x?])T Pf (x)

Problem :

I Works as a test (yes/no needs heuristic)
I Resorts to second-order derivatives.



Concrete Objective

Delanoue, Jaulin and Cottenceau prove

∀x 6= x?, V̇ (x) < 0

by checking the concavity of V̇ , i.e., by checking

∀x ∈ [x ], D2V̇ (x) is ND (negative definite).

Uncertainty on x? can easily be taken into account with a
“thick” function

V̇ : x 7→ (x − [x?])T Pf (x)

Problem :

I Works as a test (yes/no needs heuristic)
I Resorts to second-order derivatives.



Concrete Objective

Delanoue, Jaulin and Cottenceau prove

∀x 6= x?, V̇ (x) < 0

by checking the concavity of V̇ , i.e., by checking

∀x ∈ [x ], D2V̇ (x) is ND (negative definite).

Uncertainty on x? can easily be taken into account with a
“thick” function

V̇ : x 7→ (x − [x?])T Pf (x)

Problem :

I Works as a test (yes/no needs heuristic)
I Resorts to second-order derivatives.



Concrete Objective

Delanoue, Jaulin and Cottenceau prove

∀x 6= x?, V̇ (x) < 0

by checking the concavity of V̇ , i.e., by checking

∀x ∈ [x ], D2V̇ (x) is ND (negative definite).

Uncertainty on x? can easily be taken into account with a
“thick” function

V̇ : x 7→ (x − [x?])T Pf (x)

Problem :

I Works as a test (yes/no needs heuristic)

I Resorts to second-order derivatives.



Concrete Objective

Delanoue, Jaulin and Cottenceau prove

∀x 6= x?, V̇ (x) < 0

by checking the concavity of V̇ , i.e., by checking

∀x ∈ [x ], D2V̇ (x) is ND (negative definite).

Uncertainty on x? can easily be taken into account with a
“thick” function

V̇ : x 7→ (x − [x?])T Pf (x)

Problem :

I Works as a test (yes/no needs heuristic)
I Resorts to second-order derivatives.



Outline
Introduction

Context

Overall Objective

Lyapunov Functions

Concrete Objective

Contribution

Overview

Testing a Neighborhood

Building an Ellispoid

First Algorithm

Building a Neighborhood

Second Algorithm

Conclusion



Overview

Contribution.

We propose two algorithms :

I The first also works as a test but uses only 1st order
derivatives

I The second uses 2nd order derivative but always gives a
solution (under mild conditions)

I Both work directly with ellipsoids (inputs and outputs are
radii)



Overview

Contribution.

We propose two algorithms :

I The first also works as a test but uses only 1st order
derivatives

I The second uses 2nd order derivative but always gives a
solution (under mild conditions)

I Both work directly with ellipsoids (inputs and outputs are
radii)



Overview

Contribution.

We propose two algorithms :

I The first also works as a test but uses only 1st order
derivatives

I The second uses 2nd order derivative but always gives a
solution (under mild conditions)

I Both work directly with ellipsoids (inputs and outputs are
radii)



Outline
Introduction

Context

Overall Objective

Lyapunov Functions

Concrete Objective

Contribution

Overview

Testing a Neighborhood

Building an Ellispoid

First Algorithm

Building a Neighborhood

Second Algorithm

Conclusion



Testing a Neighborhood

First, we know from the fundamental theorem of analysis that,
for all x ∈ Rn there exists a matrix S(x) such that

f (x) = f (x?) + S(x)(x − x?) = S(x)(x − x?)

and
∀[x ] ∈ IRn S([x ]) ⊆ Df ([x ]).

Proposition (“Interval Lyapuonv Equation”)

∀x ∈ [x ], define Q(x) as follows :

Q(x) := S(x)T P + PS(x).

If Q([x ]) contains only ND matrices, then N := [x ] is a valid
neighborhood.



Testing a Neighborhood

First, we know from the fundamental theorem of analysis that,
for all x ∈ Rn there exists a matrix S(x) such that

f (x) = f (x?) + S(x)(x − x?) = S(x)(x − x?)

and
∀[x ] ∈ IRn S([x ]) ⊆ Df ([x ]).

Proposition (“Interval Lyapuonv Equation”)

∀x ∈ [x ], define Q(x) as follows :

Q(x) := S(x)T P + PS(x).

If Q([x ]) contains only ND matrices, then N := [x ] is a valid
neighborhood.



Testing a Neighborhood

First, we know from the fundamental theorem of analysis that,
for all x ∈ Rn there exists a matrix S(x) such that

f (x) = f (x?) + S(x)(x − x?) = S(x)(x − x?)

and
∀[x ] ∈ IRn S([x ]) ⊆ Df ([x ]).

Proposition (“Interval Lyapuonv Equation”)

∀x ∈ [x ], define Q(x) as follows :

Q(x) := S(x)T P + PS(x).

If Q([x ]) contains only ND matrices, then N := [x ] is a valid
neighborhood.



Testing a Neighborhood

Proof :

∀x ∈ [x ], V̇ (x) = 2(x − x?)T Pf (x)

= 2(x − x?)T PS(x)(x − x?)

= (x − x?)T (S(x)T P + PS(x))(x − x?)

(using 2xT Ax = xT (AT + A)x)

= (x − x?)T Q(x)(x − x?)

and since Q(x) is ND by hypothesis, x 6= x? =⇒ V̇ (x) < 0.



Testing a Neighborhood

Proof :

∀x ∈ [x ], V̇ (x) = 2(x − x?)T Pf (x)

= 2(x − x?)T PS(x)(x − x?)

= (x − x?)T (S(x)T P + PS(x))(x − x?)

(using 2xT Ax = xT (AT + A)x)

= (x − x?)T Q(x)(x − x?)

and since Q(x) is ND by hypothesis, x 6= x? =⇒ V̇ (x) < 0.



Testing a Neighborhood

Proof :

∀x ∈ [x ], V̇ (x) = 2(x − x?)T Pf (x)

= 2(x − x?)T PS(x)(x − x?)

= (x − x?)T (S(x)T P + PS(x))(x − x?)

(using 2xT Ax = xT (AT + A)x)

= (x − x?)T Q(x)(x − x?)

and since Q(x) is ND by hypothesis, x 6= x? =⇒ V̇ (x) < 0.



Testing a Neighborhood

Proof :

∀x ∈ [x ], V̇ (x) = 2(x − x?)T Pf (x)

= 2(x − x?)T PS(x)(x − x?)

= (x − x?)T (S(x)T P + PS(x))(x − x?)

(using 2xT Ax = xT (AT + A)x)

= (x − x?)T Q(x)(x − x?)

and since Q(x) is ND by hypothesis, x 6= x? =⇒ V̇ (x) < 0.



Testing a Neighborhood

Proof :

∀x ∈ [x ], V̇ (x) = 2(x − x?)T Pf (x)

= 2(x − x?)T PS(x)(x − x?)

= (x − x?)T (S(x)T P + PS(x))(x − x?)

(using 2xT Ax = xT (AT + A)x)

= (x − x?)T Q(x)(x − x?)

and since Q(x) is ND by hypothesis, x 6= x? =⇒ V̇ (x) < 0.



Testing a Neighborhood

Proof :

∀x ∈ [x ], V̇ (x) = 2(x − x?)T Pf (x)

= 2(x − x?)T PS(x)(x − x?)

= (x − x?)T (S(x)T P + PS(x))(x − x?)

(using 2xT Ax = xT (AT + A)x)

= (x − x?)T Q(x)(x − x?)

and since Q(x) is ND by hypothesis, x 6= x? =⇒ V̇ (x) < 0.



Testing a Neighborhood

Since P satisfies

Df (x?)T P + P Df (x?) ∼ −I

We have
Q(x?) ∼ −I.

So, for sufficiently small boxes [x ], the test will succeed.

We now have to build a P-ellipsoid inside [x ].

And take into account the uncertainty on x?.



Testing a Neighborhood

Since P satisfies

Df (x?)T P + P Df (x?) ∼ −I

We have
Q(x?) ∼ −I.

So, for sufficiently small boxes [x ], the test will succeed.

We now have to build a P-ellipsoid inside [x ].

And take into account the uncertainty on x?.



Testing a Neighborhood

Since P satisfies

Df (x?)T P + P Df (x?) ∼ −I

We have
Q(x?) ∼ −I.

So, for sufficiently small boxes [x ], the test will succeed.

We now have to build a P-ellipsoid inside [x ].

And take into account the uncertainty on x?.



Testing a Neighborhood

Since P satisfies

Df (x?)T P + P Df (x?) ∼ −I

We have
Q(x?) ∼ −I.

So, for sufficiently small boxes [x ], the test will succeed.

We now have to build a P-ellipsoid inside [x ].

And take into account the uncertainty on x?.



Testing a Neighborhood

Since P satisfies

Df (x?)T P + P Df (x?) ∼ −I

We have
Q(x?) ∼ −I.

So, for sufficiently small boxes [x ], the test will succeed.

We now have to build a P-ellipsoid inside [x ].

And take into account the uncertainty on x?.



Outline
Introduction

Context

Overall Objective

Lyapunov Functions

Concrete Objective

Contribution

Overview

Testing a Neighborhood

Building an Ellispoid

First Algorithm

Building a Neighborhood

Second Algorithm

Conclusion



Building an Ellispoid

So we have first to find the largest value of r such that

[x ] ⊇ [x?] +� (E(0, r))



Building an Ellispoid

And then build the set

S :=
⋂

x∈[x?]

x +� (E(0, r))

which is attracting.

Note :

I S may not be invariant
I S may even not contain x? !
I But will be in practice (as

[x?] is very small)

Problem : S is not an ellipsoid (and difficult to compute).



Building an Ellispoid

And then build the set

S :=
⋂

x∈[x?]

x +� (E(0, r))

which is attracting.

Note :
I S may not be invariant

I S may even not contain x? !
I But will be in practice (as

[x?] is very small)

Problem : S is not an ellipsoid (and difficult to compute).



Building an Ellispoid

And then build the set

S :=
⋂

x∈[x?]

x +� (E(0, r))

which is attracting.

Note :
I S may not be invariant
I S may even not contain x? !

I But will be in practice (as
[x?] is very small)

Problem : S is not an ellipsoid (and difficult to compute).



Building an Ellispoid

And then build the set

S :=
⋂

x∈[x?]

x +� (E(0, r))

which is attracting.

Note :
I S may not be invariant
I S may even not contain x? !
I But will be in practice (as

[x?] is very small)

Problem : S is not an ellipsoid (and difficult to compute).



Building an Ellispoid

And then build the set

S :=
⋂

x∈[x?]

x +� (E(0, r))

which is attracting.

Note :
I S may not be invariant
I S may even not contain x? !
I But will be in practice (as

[x?] is very small)

Problem : S is not an ellipsoid (and difficult to compute).



Building an Ellispoid

Idea : we proceed in the other way round.

We start from a candidate ellipsoid

E(x̂ , r̂)

with x̂ ∈ [x?] and build the box [x ] accordingly.



Building an Ellispoid

Define

[∆] :=
∥∥∥[x?]− x̂

∥∥∥
P
.

Thanks to the triangular inequality, we have :

I E(x̂ , r̂) ⊆ E(x?, r̂ + ∆).
I If ∆ ≤ r̂ then x? ∈ E(x̂ , r̂).



Building an Ellispoid

Define

[∆] :=
∥∥∥[x?]− x̂

∥∥∥
P
.

Thanks to the triangular inequality, we have :

I E(x̂ , r̂) ⊆ E(x?, r̂ + ∆).

I If ∆ ≤ r̂ then x? ∈ E(x̂ , r̂).



Building an Ellispoid

Define

[∆] :=
∥∥∥[x?]− x̂

∥∥∥
P
.

Thanks to the triangular inequality, we have :

I E(x̂ , r̂) ⊆ E(x?, r̂ + ∆).
I If ∆ ≤ r̂ then x? ∈ E(x̂ , r̂).



Building an Ellispoid

Define
[x ] := [x?] +�

(
E(0, r̂ + ∆)

)

If Q([x ]) is ND :

=⇒ [x ] is a valid neighborhood
=⇒ E(x?, r̂ + ∆) is invariant
=⇒ E(x̂ , r̂) is attracting



Building an Ellispoid

Define
[x ] := [x?] +�

(
E(0, r̂ + ∆)

)

If Q([x ]) is ND :

=⇒ [x ] is a valid neighborhood
=⇒ E(x?, r̂ + ∆) is invariant
=⇒ E(x̂ , r̂) is attracting



Building an Ellispoid

Define
[x ] := [x?] +�

(
E(0, r̂ + ∆)

)

If Q([x ]) is ND :

=⇒ [x ] is a valid neighborhood

=⇒ E(x?, r̂ + ∆) is invariant
=⇒ E(x̂ , r̂) is attracting



Building an Ellispoid

Define
[x ] := [x?] +�

(
E(0, r̂ + ∆)

)

If Q([x ]) is ND :

=⇒ [x ] is a valid neighborhood
=⇒ E(x?, r̂ + ∆) is invariant

=⇒ E(x̂ , r̂) is attracting



Building an Ellispoid

Define
[x ] := [x?] +�

(
E(0, r̂ + ∆)

)

If Q([x ]) is ND :

=⇒ [x ] is a valid neighborhood
=⇒ E(x?, r̂ + ∆) is invariant
=⇒ E(x̂ , r̂) is attracting



Outline
Introduction

Context

Overall Objective

Lyapunov Functions

Concrete Objective

Contribution

Overview

Testing a Neighborhood

Building an Ellispoid

First Algorithm

Building a Neighborhood

Second Algorithm

Conclusion



First Algorithm

Summary
∆ ≥

∥∥∥[x?]− x̂
∥∥∥

P
,

[x ] ⊇ [x?] +�
(
E(0, r̂ + ∆)

)
,

[J] ⊇ [Df ]([x ]),

[Q] ⊇ [J]T P + P[J].

If [Q] is ND and ∆ ≤ r̂ then

x? ∈ E(x̂ , r̂) ⊆ E(x?, r̂ + ∆) ⊆ A(x?).



First Algorithm

Summary
∆ ≥

∥∥∥[x?]− x̂
∥∥∥

P
,

[x ] ⊇ [x?] +�
(
E(0, r̂ + ∆)

)
,

[J] ⊇ [Df ]([x ]),

[Q] ⊇ [J]T P + P[J].

If [Q] is ND and ∆ ≤ r̂ then

x? ∈ E(x̂ , r̂) ⊆ E(x?, r̂ + ∆) ⊆ A(x?).



First Algorithm

Summary
∆ ≥

∥∥∥[x?]− x̂
∥∥∥

P
,

[x ] ⊇ [x?] +�
(
E(0, r̂ + ∆)

)
,

[J] ⊇ [Df ]([x ]),

[Q] ⊇ [J]T P + P[J].

If [Q] is ND and ∆ ≤ r̂ then

x? ∈ E(x̂ , r̂) ⊆ E(x?, r̂ + ∆) ⊆ A(x?).



First Algorithm

Summary
∆ ≥

∥∥∥[x?]− x̂
∥∥∥

P
,

[x ] ⊇ [x?] +�
(
E(0, r̂ + ∆)

)
,

[J] ⊇ [Df ]([x ]),

[Q] ⊇ [J]T P + P[J].

If [Q] is ND and ∆ ≤ r̂ then

x? ∈ E(x̂ , r̂) ⊆ E(x?, r̂ + ∆) ⊆ A(x?).



First Algorithm

Summary
∆ ≥

∥∥∥[x?]− x̂
∥∥∥

P
,

[x ] ⊇ [x?] +�
(
E(0, r̂ + ∆)

)
,

[J] ⊇ [Df ]([x ]),

[Q] ⊇ [J]T P + P[J].

If [Q] is ND and ∆ ≤ r̂ then

x? ∈ E(x̂ , r̂) ⊆ E(x?, r̂ + ∆) ⊆ A(x?).



First Algorithm

Summary
∆ ≥

∥∥∥[x?]− x̂
∥∥∥

P
,

[x ] ⊇ [x?] +�
(
E(0, r̂ + ∆)

)
,

[J] ⊇ [Df ]([x ]),

[Q] ⊇ [J]T P + P[J].

If [Q] is ND and ∆ ≤ r̂ then

x? ∈ E(x̂ , r̂) ⊆ E(x?, r̂ + ∆) ⊆ A(x?).



Outline
Introduction

Context

Overall Objective

Lyapunov Functions

Concrete Objective

Contribution

Overview

Testing a Neighborhood

Building an Ellispoid

First Algorithm

Building a Neighborhood

Second Algorithm

Conclusion



Building a Neighborhood

We want to build a domain N around x? where the matrix
function Q(x) = S(x)T P + PS(x) is ND.

Since Q(x?) ∼ −I, we replace the condition

Q(x) ND

by the sufficient condition

‖Q(x) + I‖ < 1.

We can then linearize this relation to obtain a condition

‖x − x̂‖P ≤ . . .

using bounds L and L′ on the P-norm Lipsichitz constants of S
and ST , on an initial arbirary box [x ].



Building a Neighborhood

We want to build a domain N around x? where the matrix
function Q(x) = S(x)T P + PS(x) is ND.

Since Q(x?) ∼ −I, we replace the condition

Q(x) ND

by the sufficient condition

‖Q(x) + I‖ < 1.

We can then linearize this relation to obtain a condition

‖x − x̂‖P ≤ . . .

using bounds L and L′ on the P-norm Lipsichitz constants of S
and ST , on an initial arbirary box [x ].



Building a Neighborhood

We want to build a domain N around x? where the matrix
function Q(x) = S(x)T P + PS(x) is ND.

Since Q(x?) ∼ −I, we replace the condition

Q(x) ND

by the sufficient condition

‖Q(x) + I‖ < 1.

We can then linearize this relation to obtain a condition

‖x − x̂‖P ≤ . . .

using bounds L and L′ on the P-norm Lipsichitz constants of S
and ST , on an initial arbirary box [x ].



Building a Neighborhood

We want to build a domain N around x? where the matrix
function Q(x) = S(x)T P + PS(x) is ND.

Since Q(x?) ∼ −I, we replace the condition

Q(x) ND

by the sufficient condition

‖Q(x) + I‖ < 1.

We can then linearize this relation to obtain a condition

‖x − x̂‖P ≤ . . .

using bounds L and L′ on the P-norm Lipsichitz constants of S
and ST , on an initial arbirary box [x ].



Building a Neighborhood

The constants in the equivalence relation between the∞-norm
and P-norm involve the two extremal eigenvalues λ and λ of P.

We need an algorithm for rigorously bounding eigenvalues
(e.g. interval variant of Gerschgorin’s circles)



Building a Neighborhood

The constants in the equivalence relation between the∞-norm
and P-norm involve the two extremal eigenvalues λ and λ of P.

We need an algorithm for rigorously bounding eigenvalues
(e.g. interval variant of Gerschgorin’s circles)



Outline
Introduction

Context

Overall Objective

Lyapunov Functions

Concrete Objective

Contribution

Overview

Testing a Neighborhood

Building an Ellispoid

First Algorithm

Building a Neighborhood

Second Algorithm

Conclusion



Second Algorithm
Summary

∆ ≥
∥∥∥[x?]− x̂

∥∥∥
P
,

ν ≥

√
nλ
λ

∥∥∥[Q?] + I
∥∥∥
∞

with


[Q?] ⊇ [J∗]T P + P[J∗]

[J?] ⊇ [Df ]([x?])

[x ] ⊇ [x?] +�
(
E(0, r̂ + ∆)

)
,

ř :=
1− ν

(L + L′) λ
−∆.

If ν < 1 and min{r̂ , ř} ≥ ∆ then

x? ∈ E(x̂ ,min{r̂ , ř}) ⊆ A(x?).



Second Algorithm
Summary

∆ ≥
∥∥∥[x?]− x̂

∥∥∥
P
,

ν ≥

√
nλ
λ

∥∥∥[Q?] + I
∥∥∥
∞

with


[Q?] ⊇ [J∗]T P + P[J∗]

[J?] ⊇ [Df ]([x?])

[x ] ⊇ [x?] +�
(
E(0, r̂ + ∆)

)
,

ř :=
1− ν

(L + L′) λ
−∆.

If ν < 1 and min{r̂ , ř} ≥ ∆ then

x? ∈ E(x̂ ,min{r̂ , ř}) ⊆ A(x?).



Second Algorithm
Summary

∆ ≥
∥∥∥[x?]− x̂

∥∥∥
P
,

ν ≥

√
nλ
λ

∥∥∥[Q?] + I
∥∥∥
∞

with


[Q?] ⊇ [J∗]T P + P[J∗]

[J?] ⊇ [Df ]([x?])

[x ] ⊇ [x?] +�
(
E(0, r̂ + ∆)

)
,

ř :=
1− ν

(L + L′) λ
−∆.

If ν < 1 and min{r̂ , ř} ≥ ∆ then

x? ∈ E(x̂ ,min{r̂ , ř}) ⊆ A(x?).



Second Algorithm
Summary

∆ ≥
∥∥∥[x?]− x̂

∥∥∥
P
,

ν ≥

√
nλ
λ

∥∥∥[Q?] + I
∥∥∥
∞

with


[Q?] ⊇ [J∗]T P + P[J∗]

[J?] ⊇ [Df ]([x?])

[x ] ⊇ [x?] +�
(
E(0, r̂ + ∆)

)
,

ř :=
1− ν

(L + L′) λ
−∆.

If ν < 1 and min{r̂ , ř} ≥ ∆ then

x? ∈ E(x̂ ,min{r̂ , ř}) ⊆ A(x?).



Second Algorithm
Summary

∆ ≥
∥∥∥[x?]− x̂

∥∥∥
P
,

ν ≥

√
nλ
λ

∥∥∥[Q?] + I
∥∥∥
∞

with


[Q?] ⊇ [J∗]T P + P[J∗]

[J?] ⊇ [Df ]([x?])

[x ] ⊇ [x?] +�
(
E(0, r̂ + ∆)

)
,

ř :=
1− ν

(L + L′) λ
−∆.

If ν < 1 and min{r̂ , ř} ≥ ∆ then

x? ∈ E(x̂ ,min{r̂ , ř}) ⊆ A(x?).



Second Algorithm
Summary

∆ ≥
∥∥∥[x?]− x̂

∥∥∥
P
,

ν ≥

√
nλ
λ

∥∥∥[Q?] + I
∥∥∥
∞

with


[Q?] ⊇ [J∗]T P + P[J∗]

[J?] ⊇ [Df ]([x?])

[x ] ⊇ [x?] +�
(
E(0, r̂ + ∆)

)
,

ř :=
1− ν

(L + L′) λ
−∆.

If ν < 1 and min{r̂ , ř} ≥ ∆ then

x? ∈ E(x̂ ,min{r̂ , ř}) ⊆ A(x?).



Conclusion

I We can build a certified attraction region around a fixpoint
+ Even if the fixpoint is approximately known
+ Only first-order derivative are necessary
+ Experiments show that the size of the region is large

compared to existing approaches (see research report)
+ The algorithm scales up
- Invariance is lost in theory (but not in practice)



Conclusion

I We can build a certified attraction region around a fixpoint

+ Even if the fixpoint is approximately known
+ Only first-order derivative are necessary
+ Experiments show that the size of the region is large

compared to existing approaches (see research report)
+ The algorithm scales up
- Invariance is lost in theory (but not in practice)



Conclusion

I We can build a certified attraction region around a fixpoint
+ Even if the fixpoint is approximately known

+ Only first-order derivative are necessary
+ Experiments show that the size of the region is large

compared to existing approaches (see research report)
+ The algorithm scales up
- Invariance is lost in theory (but not in practice)



Conclusion

I We can build a certified attraction region around a fixpoint
+ Even if the fixpoint is approximately known
+ Only first-order derivative are necessary

+ Experiments show that the size of the region is large
compared to existing approaches (see research report)

+ The algorithm scales up
- Invariance is lost in theory (but not in practice)



Conclusion

I We can build a certified attraction region around a fixpoint
+ Even if the fixpoint is approximately known
+ Only first-order derivative are necessary
+ Experiments show that the size of the region is large

compared to existing approaches (see research report)

+ The algorithm scales up
- Invariance is lost in theory (but not in practice)



Conclusion

I We can build a certified attraction region around a fixpoint
+ Even if the fixpoint is approximately known
+ Only first-order derivative are necessary
+ Experiments show that the size of the region is large

compared to existing approaches (see research report)
+ The algorithm scales up

- Invariance is lost in theory (but not in practice)



Conclusion

I We can build a certified attraction region around a fixpoint
+ Even if the fixpoint is approximately known
+ Only first-order derivative are necessary
+ Experiments show that the size of the region is large

compared to existing approaches (see research report)
+ The algorithm scales up
- Invariance is lost in theory (but not in practice)



Thanks !



Algebraic approach

Assume f is polynomial. Fix r > 0.

If there exists a polynomial p(x) such that

∀x ∈ Rn, p(x) ≥ 0 ∧ − (x − x?)T Pf (x)︸ ︷︷ ︸
V̇ (x)

+p(x)
(

V (x)−r
)
≥ 0

then E(x?, r) is a correct answer.

Tractable with LMI solver if we impose sum of square
decomposition in place of ≥ 0.

Problem :

I Polynomiality assumption
I LMI solver not robust with respect to rouding errors
I Cannot handle uncertainty on x? (x? ∈ [x?])



Algebraic approach

Assume f is polynomial. Fix r > 0.

If there exists a polynomial p(x) such that

∀x ∈ Rn, p(x) ≥ 0 ∧ − (x − x?)T Pf (x)︸ ︷︷ ︸
V̇ (x)

+p(x)
(

V (x)−r
)
≥ 0

then E(x?, r) is a correct answer.

Tractable with LMI solver if we impose sum of square
decomposition in place of ≥ 0.

Problem :

I Polynomiality assumption
I LMI solver not robust with respect to rouding errors
I Cannot handle uncertainty on x? (x? ∈ [x?])



Algebraic approach

Assume f is polynomial. Fix r > 0.

If there exists a polynomial p(x) such that

∀x ∈ Rn, p(x) ≥ 0 ∧ − (x − x?)T Pf (x)︸ ︷︷ ︸
V̇ (x)

+p(x)
(

V (x)−r
)
≥ 0

then E(x?, r) is a correct answer.

Tractable with LMI solver if we impose sum of square
decomposition in place of ≥ 0.

Problem :

I Polynomiality assumption
I LMI solver not robust with respect to rouding errors
I Cannot handle uncertainty on x? (x? ∈ [x?])



Algebraic approach

Assume f is polynomial. Fix r > 0.

If there exists a polynomial p(x) such that

∀x ∈ Rn, p(x) ≥ 0 ∧ − (x − x?)T Pf (x)︸ ︷︷ ︸
V̇ (x)

+p(x)
(

V (x)−r
)
≥ 0

then E(x?, r) is a correct answer.

Tractable with LMI solver if we impose sum of square
decomposition in place of ≥ 0.

Problem :

I Polynomiality assumption

I LMI solver not robust with respect to rouding errors
I Cannot handle uncertainty on x? (x? ∈ [x?])



Algebraic approach

Assume f is polynomial. Fix r > 0.

If there exists a polynomial p(x) such that

∀x ∈ Rn, p(x) ≥ 0 ∧ − (x − x?)T Pf (x)︸ ︷︷ ︸
V̇ (x)

+p(x)
(

V (x)−r
)
≥ 0

then E(x?, r) is a correct answer.

Tractable with LMI solver if we impose sum of square
decomposition in place of ≥ 0.

Problem :

I Polynomiality assumption
I LMI solver not robust with respect to rouding errors

I Cannot handle uncertainty on x? (x? ∈ [x?])



Algebraic approach

Assume f is polynomial. Fix r > 0.

If there exists a polynomial p(x) such that

∀x ∈ Rn, p(x) ≥ 0 ∧ − (x − x?)T Pf (x)︸ ︷︷ ︸
V̇ (x)

+p(x)
(

V (x)−r
)
≥ 0

then E(x?, r) is a correct answer.

Tractable with LMI solver if we impose sum of square
decomposition in place of ≥ 0.

Problem :

I Polynomiality assumption
I LMI solver not robust with respect to rouding errors
I Cannot handle uncertainty on x? (x? ∈ [x?])



Let us consider first a simpler case of q : R→ R.

Assume that we have :
I a point x? s.t. q(x?) ∼ −1
I a Lipschitz bound L on q over an (arbirary initial) set N ′ :

∀x , y ∈ N ′ ‖q(x)− q(y)‖ ≤ L‖x − y‖.



Let us consider first a simpler case of q : R→ R.
Assume that we have :

I a point x? s.t. q(x?) ∼ −1
I a Lipschitz bound L on q over an (arbirary initial) set N ′ :

∀x , y ∈ N ′ ‖q(x)− q(y)‖ ≤ L‖x − y‖.



Let us consider first a simpler case of q : R→ R.
Assume that we have :
I a point x? s.t. q(x?) ∼ −1

I a Lipschitz bound L on q over an (arbirary initial) set N ′ :

∀x , y ∈ N ′ ‖q(x)− q(y)‖ ≤ L‖x − y‖.



Let us consider first a simpler case of q : R→ R.
Assume that we have :
I a point x? s.t. q(x?) ∼ −1
I a Lipschitz bound L on q over an (arbirary initial) set N ′ :

∀x , y ∈ N ′ ‖q(x)− q(y)‖ ≤ L‖x − y‖.



Then (
x ∈ N ′ ∧ ‖x − x?‖ < 1

L
q(x?)

)
=⇒q(x) < 0



Generalization

Q(x) = S(x)T P + PS(x)

We need Lipschitz constants for S and ST on an initial domain

N ′ := ‖x − x̂‖ ≤ r̂

and a bound ν on ‖Q(x?) + I‖. Then :



Generalization

Q(x) = S(x)T P + PS(x)

We need Lipschitz constants for S and ST on an initial domain

N ′ := ‖x − x̂‖ ≤ r̂

and a bound ν on ‖Q(x?) + I‖. Then :



Generalization

Q(x) = S(x)T P + PS(x)

We need Lipschitz constants for S and ST on an initial domain

N ′ := ‖x − x̂‖ ≤ r̂

and a bound ν on ‖Q(x?) + I‖. Then :



Generalization

Q(x) = S(x)T P + PS(x)

We need Lipschitz constants for S and ST on an initial domain

N ′ := ‖x − x̂‖ ≤ r̂

and a bound ν on ‖Q(x?) + I‖. Then :



The neighborhood is therefore characterized by :

‖x − x̂‖ ≤ min(ř , r̂)

with
ř :=

1− ν
(L + L′) λ

−∆.

This is actually true for any norm.

Since we prefer a P-ellipsoids, all the bounds on the right side
should be with the P-norm :

I N ′ −→ ok (evaluate the Lipschitz constants on the hull [x ])
I ∆ −→ ok
I ν −→ from

(
Q([x?]) + I

)
+ norm equivalence

I L and L′ −→ from ∂2fi
∂xj∂xk

([x ]) + norm equivalence

I P −→ from a direct formula



The neighborhood is therefore characterized by :

‖x − x̂‖ ≤ min(ř , r̂)

with
ř :=

1− ν
(L + L′) λ

−∆.

This is actually true for any norm.

Since we prefer a P-ellipsoids, all the bounds on the right side
should be with the P-norm :

I N ′ −→ ok (evaluate the Lipschitz constants on the hull [x ])
I ∆ −→ ok
I ν −→ from

(
Q([x?]) + I

)
+ norm equivalence

I L and L′ −→ from ∂2fi
∂xj∂xk

([x ]) + norm equivalence

I P −→ from a direct formula



The neighborhood is therefore characterized by :

‖x − x̂‖ ≤ min(ř , r̂)

with
ř :=

1− ν
(L + L′) λ

−∆.

This is actually true for any norm.

Since we prefer a P-ellipsoids, all the bounds on the right side
should be with the P-norm :

I N ′ −→ ok (evaluate the Lipschitz constants on the hull [x ])
I ∆ −→ ok
I ν −→ from

(
Q([x?]) + I

)
+ norm equivalence

I L and L′ −→ from ∂2fi
∂xj∂xk

([x ]) + norm equivalence

I P −→ from a direct formula



The neighborhood is therefore characterized by :

‖x − x̂‖ ≤ min(ř , r̂)

with
ř :=

1− ν
(L + L′) λ

−∆.

This is actually true for any norm.

Since we prefer a P-ellipsoids, all the bounds on the right side
should be with the P-norm :

I N ′ −→ ok (evaluate the Lipschitz constants on the hull [x ])

I ∆ −→ ok
I ν −→ from

(
Q([x?]) + I

)
+ norm equivalence

I L and L′ −→ from ∂2fi
∂xj∂xk

([x ]) + norm equivalence

I P −→ from a direct formula



The neighborhood is therefore characterized by :

‖x − x̂‖ ≤ min(ř , r̂)

with
ř :=

1− ν
(L + L′) λ

−∆.

This is actually true for any norm.

Since we prefer a P-ellipsoids, all the bounds on the right side
should be with the P-norm :

I N ′ −→ ok (evaluate the Lipschitz constants on the hull [x ])
I ∆ −→ ok

I ν −→ from
(

Q([x?]) + I
)

+ norm equivalence

I L and L′ −→ from ∂2fi
∂xj∂xk

([x ]) + norm equivalence

I P −→ from a direct formula



The neighborhood is therefore characterized by :

‖x − x̂‖ ≤ min(ř , r̂)

with
ř :=

1− ν
(L + L′) λ

−∆.

This is actually true for any norm.

Since we prefer a P-ellipsoids, all the bounds on the right side
should be with the P-norm :

I N ′ −→ ok (evaluate the Lipschitz constants on the hull [x ])
I ∆ −→ ok
I ν −→ from

(
Q([x?]) + I

)
+ norm equivalence

I L and L′ −→ from ∂2fi
∂xj∂xk

([x ]) + norm equivalence

I P −→ from a direct formula



The neighborhood is therefore characterized by :

‖x − x̂‖ ≤ min(ř , r̂)

with
ř :=

1− ν
(L + L′) λ

−∆.

This is actually true for any norm.

Since we prefer a P-ellipsoids, all the bounds on the right side
should be with the P-norm :

I N ′ −→ ok (evaluate the Lipschitz constants on the hull [x ])
I ∆ −→ ok
I ν −→ from

(
Q([x?]) + I

)
+ norm equivalence

I L and L′ −→ from ∂2fi
∂xj∂xk

([x ]) + norm equivalence

I P −→ from a direct formula



The neighborhood is therefore characterized by :

‖x − x̂‖ ≤ min(ř , r̂)

with
ř :=

1− ν
(L + L′) λ

−∆.

This is actually true for any norm.

Since we prefer a P-ellipsoids, all the bounds on the right side
should be with the P-norm :

I N ′ −→ ok (evaluate the Lipschitz constants on the hull [x ])
I ∆ −→ ok
I ν −→ from

(
Q([x?]) + I

)
+ norm equivalence

I L and L′ −→ from ∂2fi
∂xj∂xk

([x ]) + norm equivalence

I P −→ from a direct formula


	Introduction
	Context
	Overall Objective
	Lyapunov Functions
	Concrete Objective

	Contribution
	Overview
	Testing a Neighborhood
	Building an Ellispoid
	First Algorithm
	Building a Neighborhood
	Second Algorithm

	Conclusion

