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A Quick Introduction to Invariants

Definition

A logical assertion at a location over the program variables that remain
same whenever the location is reached

What are they used for?

Synthesizing an invariant is a key concept in formal verification to ensure
correctness of programs.

e.g. the program variables stay within some bounds

How to find Invariant?

By inferring a stronger form of the invariant i.e. inductive invariant
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Example

Octagon example [Miné et al. (2015)]

x := input [−1, 1]
y := input [−1, 1]
while true do
x ′ :=

√
2

2
∗ (x − y)

y ′ :=
√

2
2
∗ (x + y)

x := x ′ y := y ′

done

E := [−1, 1]× [−1, 1]

(entry states)

F (Y ) := {(
√

2

2
(x − y),

√
2

2
(x + y))|(x , y) ∈ Y }

(loop body)
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Difference between invariant and inductive invariant using previous example

Invariant versus inductive invariant

Let us take a box I := [−2, 2]× [−2, 2]

All program states i.e. (x , y) lie inside I every time the execution
reaches the loop head ∴ I is invariant.

I is not an inductive invariant because F (I ) * I (also in next slide)

Thus, invariants are not always inductive invariants

Bibek Kabi – Eric Goubault – Sylvie Putot A Concoction of Zonotope Abstraction and Constraint Programming for finding an Invariant



A Concoction of
Zonotope

Abstraction and
Constraint

Programming for
finding an
Invariant

Bibek Kabi –
Eric Goubault –

Sylvie Putot

Problem
Statement

Related Work

Zonotopes

Future Scope

References

Method to Infer Inductive Invariant

Abstract Interpretation

lfpF = inf{F (G) ⊆ G} [Tarski (1955)] (smallest inductive invariant)

The well-known and dominant approach for finding inductive invariant
for program verification is abstract interpretation [Cousot et al.
(1977)]

A classical way to find lfpF is to use Kleene iterations (F is continous
and semantic domain is complete partial order)
X 0 = E ,X 1 = F (X 0), . . . ,X k+1 = X k ∪ F (X k)

Kleene iterations on the example do converge but to a useless one
[−∞,∞]× [−∞,∞] i.e. (>)
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Inferences Drawn

I := [−2, 2]× [−2, 2] is not an inductive invariant ∵ F (I ) * I

In fact, no box is inductive

If we have a union of boxes G with the spiky edges removed then the
set is inductive (shown in figure [Miné COVERIF meeting])

We can apply constraint solving with splitting

Also, abstract domain to be chosen is very crucial for F
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Miné et al. (2015)

Algorithm: in Brief

Replacing each operation in the program with associated operation of
the chosen abstract domain

Forming set of constraints and solving them using constraint solver
based on propagation and splitting

The algorithm starts with a single box S (here S=[−2, 2]× [−2, 2])
and iteratively split [Pelleau et al. (2013)] or discard until the
inductive invariant properties are satisfied or may stop if the size of
the boxes is small enough

Properties to infer inductive invariant

E ⊆ ∪iSi (set of boxes contains the entry)

Si ⊆ I (set of boxes entails the invariant)

this particular property makes possible for the constraint solving
to be applied

F ](Si ) ⊆ ∪iSi (set of boxes is inductive)
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Box Classification

Based on the properties discussed earlier, boxes are classified into various
categories

Box classes

doomed, if F ](Sk) ∩ (∪iSi ) = ∅
Even splitting cannot help it; are only discarded

benign, if F ](Sk) ⊆ ∪iSi

Measure of Benign:coverage(Sk):=
∑

i vol(F
](Sk )∩Si )

vol(F](Sk ))
(The ultimate

aim is to have ∀k : coverage(Sk)= 1 which implies the algorithm
returns when the box has a coverage of 1)

useful, if Sk ∩ (∪iF
](Si )) 6= ∅
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Box Classification

necessary, if Sk ∩ E 6= ∅
if necessary, we split
else check for usefulness (next slide) or size or coverage and
decide to discard or split until εs (here it is
0.01× size([−2, 2]× [−2, 2])
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Box Classification

useful, if Sk ∩ (∪iF
](Si )) 6= ∅

In the figure, the box Sk intersects the image of a box Sl under F ]

which implies that F ](Sl) ⊆ ∪iSi i.e. Sk helps make Sl benign

if Sk is discarded it leaves Sl non-benign i.e. F ](Sl) * ∪i 6=kSi and
eventually failure
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Motivation for using zonotopic abstraction

To have a more precise F ] and also tractable

To have less splitting

To sum up, we are trying to see how much refinement is possible with
such an abstraction when combined with constraint solving
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A Brief Introduction on Zonotopes

An affine form of a variable x

x̂ := α0
x +

n∑
i=1

αi
xεi

Zonotope is the geometric concretization of sets of values taken by the
affine form

x̂ = 20− 3ε1 + 5ε2 + 2ε3 + 1ε4 + 3ε5

ŷ = 10− 4ε1 + 2ε2 + 1ε4 + 5ε5
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A Brief Introduction on Zonotopes

Zonotope is represented by a center c ∈ Rn and generators g (i) ∈ Rn

Z = {x ∈ Rn|x = c +

p∑
i=1

εig
i}

x̂ = 20− 3ε1 + 5ε2 + 2ε3 + 1ε4 + 3ε5

ŷ = 10− 4ε1 + 2ε2 + 1ε4 + 5ε5

c =

[
20
10

]
and

g (i) =

[
−3 5 2 1 3
4 2 0 1 5

]
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Challenges while combining zonotope abstraction and contraint solving

Challenges

Calculating coverage(Sk) needs volume computation

Volume of zonotopes can be computed by the method in [Gover
et al. (2010)]
However, this is costly
We change this into checking coverage = 1 (just an inclusion of
zonotopes) and otherwise the coverage is a heuristic, we can
think of estimating the size of the intersection by computing the
size of the resulting εi in intervals after using the CAV 2010
intersection

The size computation

one way to characterize size would be to compute sum (or
weighted sum) of the norm of the columns of generator matrix
[Combastel et al. (2015)] and [Le et al. (2013)]
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Challenges while combining zonotope abstraction and contraint solving

Splitting with overlap

A zonotope can be split into two zonotopes with overlap by splitting
the j th generator [Althoff et al. (2008)]

We split the generator with longest length (‖g (i)‖1) to ensure less
overlap
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Challenges while combining zonotope abstraction and contraint solving

Splitting without overlap

A zonotope can be split into disjoint union of parallelotopes
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Challenges while combining zonotope abstraction and contraint solving

Checking for intersection

Let Z1 = (c1, < g1, · · · , gk >) and Z2 = (c2, < h1, · · · , hm >)

Z1 ∩ Z2 6= ∅ if c1− c2 is entailed in (0, < g1, · · · , gk , h1, · · · , hm >)

We use LP solver for checking point inclusion inside zonotope
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Intersecting case
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Non-intersecting case
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Future Scope

Use CORA Toolbox [Althoff (2015)] to develop the complete
algorithm

Using of efficient data structures (hierarchical representation of sets
of zonotopes) inorder to make it faster
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