Image-based Mobile Robot localization using Interval Methods

Ide Flore Kenmogne, Vincent Drevelle

Lagadic Group Irisa/Inria Rennes Bretagne Atlantique

> Swim 2016 19-22 June

UAV navigation in GPS denied environments

lagad**i**c/ <u>32</u>

Inría

Motivation

Observation missions in GPS denied environments

Camera (most appropriate in UAVs case: weight & low cost)

Uncertainty quantification

• For mapping acquired data

lagadBC/32

• For navigation safety

Outline

Image-based pose estimation

Bounded error pose estimation using Interval analysis

UAV Pose tracking

Simulation results

Image-based pose estimation

3D point projection in an image

Which model for 3D point projection ?

< □ > < ^[] >

lagad_{6C}/32

In R_c , the perspective projection of the point $\mathbf{X} = ({}^{c}X, {}^{c}Y, {}^{c}Z)$ on the image point $\mathbf{x} = (x, y)$ can be given by :

$$\begin{cases} f^{c}X - {}^{c}Z = 0\\ f^{c}Y - {}^{c}Z = 0 \end{cases}$$

Pinhole Camera model

Let (u,v) be an image point coordinates in pixel and (x,y) its corresponding in meters.

Complete model

Simplified model

lagadīc/ 32

Where $p_x = \frac{f}{l_x}$, $p_y = \frac{f}{l_y}$ and $\delta = \delta' * f^2$. And $(u_0, v_0, p_x, p_y, \delta)$ represent the camera intrinsic parameters

Pinhole Camera model

Perspective model: Linear notation in homogeneous coordinates

$$\underbrace{\begin{pmatrix} u \\ v \\ 1 \end{pmatrix}}_{U} \approx \begin{pmatrix} p_{x} & 0 & u_{0} \\ 0 & p_{y} & v_{0} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \underbrace{\begin{pmatrix} p_{x} & 0 & u_{0} \\ 0 & p_{y} & v_{0} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}}_{K} \underbrace{\begin{pmatrix} c_{X} \\ c_{Y} \\ c_{Z} \\ 1 \end{pmatrix}}_{Y}$$

lagad8c/ 32

with,

nnia

- K: the camera intrinsic parameters matrix
- Π : the perspective projection matrix

Pose Estimation: problem

- What is Pose Estimation ?
 - pose = position and orientation of an object (6DOF)
 - pose estimation = getting the pose of an object from a 2D image
- Given
 - calibrated camera : known intrinsic parameters
 - Iandmarks positions
 - corresponding points on the image-plane
- What is wanted ?
 - the camera pose

Pose Estimation: problem

Invert the projection model (re-projection) to find the appropriate transformation between camera and World frames.

Transformation $^{\rm c}T_{\rm w}$ between world frame $F_{\rm w}$ and camera frame

F_c and perspective projection[1]

Determining the camera extrinsic parameters.

 ${}^{c}X = {}^{c}T_{w}{}^{w}X \qquad \Rightarrow \qquad x = K \prod {}^{c}T_{w}{}^{w}X$

Where, ${}^{c}T_{w}$ is a homogeneous frame transformation matrix expressed as follow :

Camera pose: ${}^{C}R_{w}$ (rotation matrix) ${}^{c}t_{w}$ (world frame position).

Pose Estimation: existing solutions[1]

- Algebraic algorithms (Good speed; poor noise filtering & numeric instabilities)
 - Linear 4/N-Point Algorithms
- Optimization (Iterative) Algorithms (numerically stable; dependence on initial guess)
 - Levenberg-Marquardt
- Hybrid Algorithms (numeric stability, speed, efficient handling of noise)

lagadic/ 32

POSIT

Point pose estimation methods

Bounded error pose estimation using Interval analysis

Bounded error measurements

- The problem
 - Pixel measurements are subject to errors
 - \blacktriangleright Complex structured environments \Rightarrow landmarks positions in the world frame not well known
- Wanted
 - propagate the uncertainty of the measurements in order to quantify pose estimate uncertainty
- We assume
 - Bounded errors on Landmarks & Image-features
- Error representation (Intervals)
 - Let x and ^wX be the measurements vectors
 - ▶ each x and ^wX component is an *interval vector*, such that $x \in [x]$ and ^wX $\in [^wX]$

agadBC/

where the *intervals* represent the **uncertainty**

Interval Analysis as a tool

We can define problem as a Constraint satisfaction problem (CSP) H using:

- ${}^{c}R_{w}(\phi, \theta, \psi)$ and ${}^{c}_{!}t_{w}(X, Y, Z)$ as variables
- x_i = K Π^cT_w ^wXi applied to each measurement correspondence (i = 1 : N, with N the number of observed landmarks) as constraints
- Additional *geometric constraints* wrt. some UAV parameters limitations, characteristics and movements feasibility

Let $q = (X, Y, Z, \phi, \theta, \psi)$, the robot pose such that ${}^{c}R_{w}$, ${}^{c}t_{w}$ are function of q, i.e., ${}^{c}T_{w} = {}^{c}T_{w}(q)$. Our CSP can be formulated as :

$$H : (x = K \ \Pi^{c} T_{w}(q) \ ^{w}X; q \in [q], x \in [x], ^{w}X \in [^{w}X])$$

The *solution set* of *H* is defined as:

 $S_{q} = \{q \in [q] \mid \exists (x, {}^{w}X) \in [x] \times [{}^{w}X], x = K \prod {}^{c}T_{w} {}^{w}X\}$

lagad4c/ 32

Contractor programming

To Contract H means replacing the pose [q] by a smaller domain [q'] such that the solution set S_q remains unchanged.

• Contractor programming

Consist in considering the algorithm behind H as a function (**Ctc**) by abstracting it from its underlying constraints **Ctc** : $IR^n \longrightarrow IR^n$ such that $C([q]) \subseteq [q]$

Where,

• *C* is a Contractor which is an operator that can be used to contract *H*

lagadEC/32

• Union, Intersection, Composition

Contractors

HC4 Contractor Based on Interval Constraint propagation

Example with :

Ínría

$$d = \sqrt{(x - x_B)^2 + (y - y_B)^2}$$

Shaving

- C([X]) will be A1 U A2 U A3
- 3B Consistency using HC4
- 4B Consistency using 3B
- NB Consistency ...

< □ > < ^[] >

lagad6c/ 32

UAV Pose tracking

Evolution model

Taking in account the fact that a UAV is a dynamic system that has embedded sensors. The kinematic evolution model is as follow: $\langle \dot{x} \rangle$

$$\dot{q} = \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{pmatrix} = \begin{pmatrix} cR_w & 0_{3\times3} \\ 0_{3\times3} & M \end{pmatrix} \begin{pmatrix} V \\ W \end{pmatrix}$$

With,

nnia

- $V = (u, v, w)^T$: linear body frame velocities
- $W = (p, q, r)^T$: angular velocities
- M is the matrix corresponding to the rotation matrix derivative in case of small angles variations

lagad8c/ 32

Pose prediction

nnía

- The robot measures its body frame velocities with an approximative estimate of the uncertainty using a gyro and an optical flow sensor.
- $\bullet \ \Rightarrow \mathsf{Bounded} \ \mathsf{error} \ \mathsf{velocities}$

$$[q](t_{k+1}) = [q](t_k) + \Delta_t \begin{bmatrix} c R_w([q](t_k)) & 0_{3\times 3} \\ 0_{3\times 3} & M([q](t_k)) \end{bmatrix} \begin{pmatrix} [V] \\ [W] \end{bmatrix} (t_k)$$

So, instead of doing a snapshot estimation, we use this interval evolution model to predict the pose at the next time-stamp.

Sensors data

- Given
 - Altitude (Z): a Barometric Altimeter
 No GPS ⇒ No info about horizontal position (X,Y)
 - Attitude
 - good pitch and roll estimates (from inertial measurement unit)

laga20C/

- larger uncertainty on yaw (due to magnetic perturbations)
- How do we make use of them ?
 - ► To initialize the pose domain
 - In case of empty domains, use proprioceptive data instead of camera

Method : Predictor/Corrector estimator

laga@1c/ 32

Simulation results

Simulation Environment

- Simulate the evolution of a UAV
 - Complete pose generation
 - From an arbitrary set of N Virtual World point
 - Reconstruct from reprojection the corresponding image point

laga 2BC/32

- Uncertainty
 - image points $\approx 1 px$
 - World points $\approx 1m$

Simulation results : 6Dof camera only

10 [Z](t_k) 14 16 18

Estimated position

laga24c/ 32

Simulation results

Estimated attitude

laga@6c/32

10 12 [ψ](t_k) 16 18 20

Simulation results Camera + Barometer + IMU

Estimated position

laga26c/ 32

Simulation results Camera + Barometer + IMU

Estimated attitude

4 E

laga@7c/ 32

Simulation results : Mean Computation time/epoch

Camera only

	Mean(s)	Max(s)
3B	0,26	0,59
4B	6,37	14,40
5B	137,88	223,34

$\mathsf{Camera} + \mathsf{Barometer} + \mathsf{IMU}$

	Mean(s)	Max(s)
3B	0,1584	0,25s
4B	0,28788s	0,388
5B	52,7664	0,7384

laga28c/ 32

Conclusion and Research directions

- Conclusion
 - Camera pose estimation using 3B contractor compatible with real time application
 - Data fusion (Camera + Barometer + IMU) provides tighter bounds and improves computation time
- Future work
 - Real data experiment (ongoing)
 - Precondition the system to be align with the axis for better contractions

laga@9c/ 32

- Guaranteed numerical integration
- Outlier identification and rejection
- Multi-robots cooperative localization

Equations

$$\begin{pmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{pmatrix} = \begin{pmatrix} 1 & \sin(\phi)\tan(\theta) & \cos(\phi)\tan(\theta) \\ 0 & \cos(\phi) & -\sin(\phi) \\ 0 & \sin(\phi)\sec(\theta) & \cos(\phi)\sec(\theta) \end{pmatrix} \begin{pmatrix} p \\ q \\ r \end{pmatrix}$$

Main References

- E. MARCHAND, H. UCHIYAMA AND F., Pose estimation for augmented reality: a hands-on survey, *IEEE Trans. on Visualization and Computer Graphics*, To appear, 2016.
- [2] B. TELLE, M. -J. ALDON AND N. RAMDANI, Guaranteed 3D visual sensing based on interval analysis, *In proceedings of Intelligent Robots and Systems(IROS 2003)*, 2003.
- [3] V. DREVELLE AND P. BONNIFAIT, Localization Confidence Domains via Set Inversion on Short-Term Trajectory, *IEEE Trans. on Robotics* 29(5):1244-1256,2013..

lagad1c/ 32

Thanks for listening !

