Exact solution to a parametric linear programming problem

Lubomir Kolev* <u>Iwona Skalna</u>**

*Technical University of Sofia, 1000 Sofia, **BULGARIA** **AGH University of Science and Technology, Krakow, **POLAND**

> SWIM'2016 Summer Workshop on Interval Methods Jun 19-22, 2016 Lyon (France)

Outline	Problem statement	Iterative method	Example	Conclusions

1 Problem statement

2 Iterative method

3 Example

4 Conclusions

Outline	Problem statement	Iterative method	Example	Conclusions
	•0			

Parametric linear programming (PLP) problem

$$f(x,p)=c^{T}(p)x(p),$$

where $c_i(p)$ are nonlinear functions of p, and constraint given as a linear interval parametric (LIP) system

$$A(p)x(p) = b(p), p \in \mathbf{p}$$

where $a_{ij}(p)$, $b_i(p)$ are affine-linear functions of p.

Goal: determine the range

 $\mathbf{f}^*(A(p), b(p), c(p), \mathbf{p}) = \Box \{ f(x, p) : A(p) | x = b(p), p \in \mathbf{p} \}.$

 M. Hladik. Optimal value range in interval linear programming. Fuzzy Optimization and Decision Making, 8:283-294, 2009.

Outline	Problem statement	Iterative method	Example	Conclusions
	•0			

Parametric linear programming (PLP) problem

$$f(x,p)=c^{T}(p)x(p),$$

where $c_i(p)$ are nonlinear functions of p, and constraint given as a linear interval parametric (LIP) system

$$A(p)x(p) = b(p), p \in \mathbf{p}$$

where $a_{ij}(p)$, $b_i(p)$ are affine-linear functions of p.

Goal: determine the range

$$\mathbf{f}^*\left(A(p),b(p),c(p),\mathbf{p}\right) = \Box\left\{f(x,p):A(p)x = b(p), p \in \mathbf{p}\right\}.$$

 M. Hladik. Optimal value range in interval linear programming. Fuzzy Optimization and Decision Making, 8:283-294, 2009.

Outline	Problem statement	Iterative method	Example	Conclusions
	00			

The endpoints \underline{f}^* and \overline{f}^* of the range \mathbf{f}^* can be determined as the global solutions of the following two optimization problems:

$$\underline{f}^* = \min\left\{f(x,p) : A(p)x = b(p), p \in \mathbf{p}\right\},\$$

$$\underline{f}^* = \max\left\{f(x,p) : A(p)x = b(p), p \in \mathbf{p}\right\}.$$

[2] Lubomir Kolev, A class of iterative methods for determining p-solutions of linear interval parametric systems. Reliable Computing, 2016, vol. 22, pp. 26-46.

Outline	Problem statement	Iterative method	Example	Conclusions
		00000		

Iterative method

$$\begin{split} \nu &= 0, \ \mathbf{p}^{(\nu)} = \mathbf{p} \\ \text{while } \max(\mathbf{p}^{(\nu)}) \geqslant \varepsilon_p \ \text{do} \\ &\text{Find in } \mathbf{p}^{(\nu)} \text{ an interval } \mathbf{f}^u, \text{ which encloses } \underline{f}^* \\ &\text{Using } \mathbf{f}^u \text{ and a constraint equation, reduce the domain } \\ &\mathbf{p}^{(\nu)} \text{ to a narrower domain } \mathbf{p}^{(\nu+1)} \\ &\text{ if } q(\mathbf{p}^{(\nu)}, \mathbf{p}^{(\nu+1)}) > \varepsilon_q \ then \ \nu = \nu + 1 \ \text{else} \\ &\text{ return } Only \text{ a crude estimation of } \underline{f}^* \text{ has been found } \\ &\text{end while} \\ &\text{ return } \underline{p}^* \text{ providing } \underline{f}^* \text{ has been found to lie within } \mathbf{p}^{(\nu)} \end{split}$$

Outline	Problem statement	Iterative method	Example	Conclusions
		0000		

Linear form of the parametrized solution (p-solution) of LIP

$$\mathbf{x}(p) = Lp + \mathbf{a}, p \in \mathbf{p},$$

where L is a real $n \times m$ matrix and $\mathbf{a} = x^c + s[-1, 1]$ is an *n*-dimensional interval vector.

 Kolev L. (2014) Parameterized solution of linear interval parametric systems. Applied Mathematics and Computation 246: 229-246

Quadratic form of the p-solution

$$\mathbf{x}(p) = Q\theta(p) + Lp + \mathbf{a}, p \in \mathbf{p},$$

where Q is a three dimensional $n \times m \times m$ array, $\theta_j(p) = p_j^2$, and L and **a** have the same meaning as before.

[2] Kolev L., A class of iterative methods for determining p-solutions of linear interval parametric systems. Reliable Computing, 2016, vol. 22, pp. 26-46.

Outline	Problem statement	Iterative method	Example	Conclusions
		0000		

Linear form of the parametrized solution (p-solution) of LIP

$$\mathbf{x}(p) = Lp + \mathbf{a}, p \in \mathbf{p},$$

where L is a real $n \times m$ matrix and $\mathbf{a} = x^c + s[-1, 1]$ is an *n*-dimensional interval vector.

 Kolev L. (2014) Parameterized solution of linear interval parametric systems. Applied Mathematics and Computation 246: 229-246

Quadratic form of the p-solution

$$\mathbf{x}(p) = Q\theta(p) + Lp + \mathbf{a}, p \in \mathbf{p},$$

where Q is a three dimensional $n \times m \times m$ array, $\theta_j(p) = p_j^2$, and L and **a** have the same meaning as before.

[2] Kolev L., A class of iterative methods for determining p-solutions of linear interval parametric systems. Reliable Computing, 2016, vol. 22, pp. 26-46.

Outline	Problem statement	Iterative method	Example	Conclusions
		00000		

$$f(x,p) = c^T(p)x(p), p \in \mathbf{p},$$

 $\mathbf{x}(p) = Lp + \mathbf{a}, p \in \mathbf{p}.$

$$\mathbf{f}(p) = f^0 + \sum_{j=1}^m L_j^0 p_j + s^0[-1, 1], p \in \mathbf{p},$$

where $f^0 = \sum_{i=1}^n c_i x_i^c$, $L_j^0 = \sum_{i=1}^n c_i L_{ij}$, $s^0 = \sum_{i=1}^n |c_i| s_i$.

Computing **f**^u enclosing <u>f</u>

$${f f}^*\in {f f}^u={\underline\lambda}+{f g},$$
 where ${\underline\lambda}=-\sum_{j=1}^m |L_j^0|$, and ${f g}=f^0+s^0[-1,1].$

Outline	Problem statement	Iterative method	Example	Conclusions
		00000		

$$f(x,p) = c^T(p)x(p), p \in \mathbf{p},$$

 $\mathbf{x}(p) = Lp + \mathbf{a}, p \in \mathbf{p}.$

$$\mathbf{f}(p) = f^0 + \sum_{j=1}^m L_j^0 p_j + s^0[-1, 1], p \in \mathbf{p},$$

where $f^0 = \sum_{i=1}^n c_i x_i^c$, $L_j^0 = \sum_{i=1}^n c_i L_{ij}$, $s^0 = \sum_{i=1}^n |c_i| s_i$.

Computing **f**^u enclosing <u>f</u>

$$\underline{\mathbf{f}}^* \in \mathbf{f}^u = \underline{\lambda} + \mathbf{g},$$

where $\underline{\lambda} = -\sum_{j=1}^{m} |L_j^0|$, and $\mathbf{g} = f^0 + s^0[-1, 1]$.

Outline	Problem statement	Iterative method	Example	Conclusions
		00000		

$$f(x,p) = c^T(p)x(p), p \in \mathbf{p},$$

 $\mathbf{x}(p) = Lp + \mathbf{a}, p \in \mathbf{p}.$

$$\begin{aligned} \mathbf{f}(p) &= f^0 + \sum_{j=1}^m L_j^0 p_j + s^0[-1,1], p \in \mathbf{p}, \end{aligned}$$
where $f^0 &= \sum_{i=1}^n c_i x_i^c$, $L_j^0 &= \sum_{i=1}^n c_i L_{ij}$, $s^0 &= \sum_{i=1}^n |c_i| s_i. \end{aligned}$

Computing \mathbf{f}^u enclosing $\underline{\mathbf{f}}^*$

$$\underline{\mathbf{f}}^* \in \mathbf{f}^u = \underline{\lambda} + \mathbf{g},$$

where
$$\underline{\lambda} = -\sum_{j=1}^{m} |L_j^0|$$
, and $\mathbf{g} = f^0 + s^0[-1, 1]$.

Outline P	Problem statement	Iterative method	Example	Conclusions
		00000		

$$\mathbf{f}(p) = f^0 + \sum_{j=1}^m L_j^0 p_j + s^0[-1,1], p \in \mathbf{p},$$

 $\mathbf{\underline{f}}^* \in \mathbf{f}^u = \underline{\lambda} + \mathbf{g}.$

Constraint equation

$$\sum_{j=1}^m L_j^0 p_j + s = d,$$

where $p_\in {f p_j}$, $s\in s^0[-1,1]$, $d\in s^0[-1,1]-\sum_{j=1}^m |L_j^0|.$

Outline	Problem statement	Iterative method	Example	Conclusions
		00000		

$$\mathbf{f}(p) = f^0 + \sum_{j=1}^m L_j^0 p_j + s^0[-1,1], p \in \mathbf{p},$$

 $\mathbf{\underline{f}}^* \in \mathbf{f}^u = \underline{\lambda} + \mathbf{g}.$

Constraint equation

$$\sum_{j=1}^m L_j^0 p_j + s = d,$$

where $p_{\in}\mathbf{p_{j}}$, $s \in s^{0}[-1,1]$, $d \in s^{0}[-1,1] - \sum_{j=1}^{m} |L_{j}^{0}|$.

Outline	Problem statement	Iterative method	Example	Conclusions
		00000		

Constraint propagation to narrow **p**

We select the index *i*, which corresponds to the maximum component $|L_i^0|$, j = 1, ..., m.

 $p_i = b/L_i^0,$

where
$$b = d - \sum_{j \neq i} L_j^0 p_j + s$$
.

Contracted domain

 $\mathbf{p}' = \mathbf{p} \cap (\mathbf{b}/L_i^0)$

Outline	Problem statement	Iterative method	Example	Conclusions
		00000		

Constraint propagation to narrow **p**

We select the index *i*, which corresponds to the maximum component $|L_i^0|$, j = 1, ..., m.

 $p_i = b/L_i^0,$

where
$$b = d - \sum_{j \neq i} L_j^0 p_j + s$$
.

Contracted domain

 $\mathbf{p}' = \mathbf{p} \cap (\mathbf{b}/L_i^0)$

Outline	Problem statement	Iterative method	Example	Conclusions
			000	

Example. We consider a special case of PLP with n = 3 and $c = (1, 1, 1)^T$: $f(x, p) = \sum_{n=1}^{3} x_n(p)$

$$f(x,p)=\sum_{i=1}^{3}x_{i}(p),$$

subject to A(p)x = b(p), $p \in \mathbf{p}$, where

$$A(p) = \begin{bmatrix} p_1 & p_2 + 1 & -p_3 \\ -p_2 & -3 & p_1 \\ 2 - p_3 & 4p_2 + 1 & 1 \end{bmatrix}, \quad b(p) = \begin{bmatrix} 2p_1 \\ p_3 - 1 \\ -1 \end{bmatrix}.$$

The parameter vectors are of the form

$$\mathbf{p}(\rho) = \mathbf{p}^{c} + \rho[-\mathbf{p}^{\Delta}, \mathbf{p}^{\Delta}],$$

where $p^c = (0.5, 0.5, 0.5)^T$, $p^{\Delta} = (0.5, 0.5, 0.5)^T$, and ρ is a variable.

Outline	Problem statement	Iterative method	Example	Conclusions
			000	

Table: Results for PLP ($\varepsilon_p = \varepsilon_q = 1.0e^{-6}$)

				inf			sup	
	inf	sup	p_1	<i>p</i> ₂	p 3	p_1	<i>p</i> ₂	<i>p</i> 3
0.02	-1.256	-1.219	0.510	0.510	0.490	0.490	0.490	0.510
0.05	-1.285	-1.193	0.525	0.525	0.475	0.475	0.475	0.525
0.1	-1.336	-1.152	0.550	0.550	0.450	0.450	0.450	0.550
0.15	-1.390	-1.114	0.575	0.575	0.425	0.425	0.425	0.575
0.17	-1.413	-1.099	0.585	0.585	0.415	0.415	0.415	0.585
0.18	-1.424	-1.092	0.590	0.590	0.410	0.410	0.410	0.590
0.2	-2.015	-0.463	р	р	р	р	р	р

Outline	Problem statement	Iterative method	Example	Conclusions
			000	

If the method fail (only crude bounds are produced), then we can still obtain relatively good bounds on f^* from the parametric solution and the equation:

$$\mathbf{f}^* \subseteq \mathbf{f} = f_i^0 + \sum_{j=1}^m |\mathcal{L}_j^0| [-1, 1] + s^0 [-1, 1].$$

Table: Bounds on I*

	Exact solution		Iterative method	
0.3	-1.5736	-1.0177	-1.8473	-0.6343
0.4	-1.7146	-0.9542	-2.3684	-0.1181
0.5	-1.8724	-0.8853	-3.3717	0.8779

Outline	Problem statement	Iterative method	Example	Conclusions

- The proposed iterative method yields sharp bound on the exact solution to a parametric linear programming problem assuming that the initial intervals are relatively narrow.
- The limitations can be overcome by using some more sophisticated methods for computing the upper and lower bound on the exact bounds or using some more sophisticated constraint satisfaction technique.
- We can also use better methods for computing the p-solution, for example using quadratic approximation.
- It is possible extend the prosposed approach to problems with nonlinear dependencies in the constraints system.
- The p-solution has many potentials: can be used to computed the hull solution of parametric interval linear systems,