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Parametric linear programming (PLP) problem

f (x , p) = cT (p)x(p),

where ci (p) are nonlinear functions of p, and constraint given as
a linear interval parametric (LIP) system

A(p)x(p) = b(p), p ∈ p

where aij(p), bi(p) are affine-linear functions of p.

Goal: determine the range

f∗ (A(p), b(p), c(p),p) = � {f (x , p) : A(p) x = b(p), p ∈ p} .

[1] M. Hladik. Optimal value range in interval linear programming. Fuzzy

Optimization and Decision Making, 8:283-294, 2009.
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The endpoints f ∗ and f
∗
of the range f∗ can be determined as the

global solutions of the following two optimization problems:

f ∗ = min {f (x , p) : A(p)x = b(p), p ∈ p} ,

f ∗ = max {f (x , p) : A(p)x = b(p), p ∈ p} .

[2] Lubomir Kolev, A class of iterative methods for determining p-solutions of linear
interval parametric systems. Reliable Computing, 2016, vol. 22, pp. 26-46.
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Iterative method

ν = 0, p(ν) = p

while maxr(p(ν)) > εp do

Find in p(ν) an interval fu, which encloses f ∗

Using fu and a constraint equation, reduce the domain
p(ν) to a narrower domain p(ν+1)

if q(p(ν),p(ν+1)) > εq then ν = ν + 1 else

return Only a crude estimation of f ∗ has been found
end while

return p∗ providing f ∗ has been found to lie within p(ν)
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Linear form of the parametrized solution (p-solution) of LIP

x(p) = Lp + a, p ∈ p,

where L is a real n ×m matrix and a = xc + s[−1, 1] is an
n-dimensional interval vector.

[3] Kolev L. (2014) Parameterized solution of linear interval parametric systems.
Applied Mathematics and Computation 246: 229-246

Quadratic form of the p-solution

x(p) = Qθ(p) + Lp + a, p ∈ p,

where Q is a three dimensional n×m×m array, θj(p) = p2j , and L

and a have the same meaning as before.

[2] Kolev L., A class of iterative methods for determining p-solutions of linear

interval parametric systems. Reliable Computing, 2016, vol. 22, pp. 26-46.
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f (x , p) = cT (p)x(p), p ∈ p,

x(p) = Lp + a, p ∈ p.

f(p) = f 0 +
∑m

j=1 L
0
j pj + s0[−1, 1], p ∈ p,

where f 0 =
∑n

i=1 cix
c
i , L

0
j =

∑n
i=1 ciLij , s

0 =
∑n

i=1 |ci |si .

Computing fu enclosing f∗

f∗ ∈ fu = λ+ g,

where λ = −
∑m

j=1 |L
0
j |, and g = f 0 + s0[−1, 1].
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f(p) = f 0 +
∑m

j=1 L
0
j pj + s0[−1, 1], p ∈ p,

f∗ ∈ fu = λ+ g.

Constraint equation

∑m
j=1 L

0
j pj + s = d ,

where p∈pj, s ∈ s0[−1, 1], d ∈ s0[−1, 1] −
∑m

j=1 |L
0
j |.
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Constraint propagation to narrow p

We select the index i , which corresponds to the maximum
component |L0j |, j = 1, . . . ,m.

pi = b/L0i ,

where b = d −
∑

j 6=i L
0
j pj + s.

Contracted domain

p′ = p ∩ (b/L0i )
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Example. We consider a special case of PLP with n = 3 and
c = (1, 1, 1)T :

f (x , p) =
∑3

i=1 xi(p),

subject to A(p)x = b(p), p ∈ p, where

A(p) =





p1 p2 + 1 −p3
−p2 −3 p1
2− p3 4p2 + 1 1



 , b(p) =





2p1
p3 − 1
−1



 .

The parameter vectors are of the form

p(ρ) = pc + ρ[−p∆, p∆],

where pc = (0.5, 0.5, 0.5)T , p∆ = (0.5, 0.5, 0.5)T , and ρ is
a variable.
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Table: Results for PLP (εp = εq = 1.0e−6)

inf sup
inf sup

p1 p2 p3 p1 p2 p3
0.02 -1.256 -1.219 0.510 0.510 0.490 0.490 0.490 0.510
0.05 -1.285 -1.193 0.525 0.525 0.475 0.475 0.475 0.525
0.1 -1.336 -1.152 0.550 0.550 0.450 0.450 0.450 0.550

0.15 -1.390 -1.114 0.575 0.575 0.425 0.425 0.425 0.575
0.17 -1.413 -1.099 0.585 0.585 0.415 0.415 0.415 0.585
0.18 -1.424 -1.092 0.590 0.590 0.410 0.410 0.410 0.590
0.2 -2.015 -0.463 p p p p p p
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If the method fail (only crude bounds are produced), then we can
still obtain relatively good bounds on f∗ from the parametric
solution and the equation:

f∗ ⊆ f = f 0i +
∑m

j=1 |L
0
j |[−1, 1] + s0[−1, 1].

Table: Bounds on l∗

Exact solution Iterative method

0.3 -1.5736 -1.0177 -1.8473 -0.6343

0.4 -1.7146 -0.9542 -2.3684 -0.1181

0.5 -1.8724 -0.8853 -3.3717 0.8779
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• The proposed iterative method yields sharp bound on the
exact solution to a parametric linear programming problem
assuming that the initial intervals are relatively narrow.

• The limitations can be overcome by using some more
sophisticated methods for computing the upper and lower
bound on the exact bounds or using some more sophisticated
constraint satisfaction technique.

• We can also use better methods for computing the p-solution,
for example using quadratic approximation.

• It is possible extend the prosposed approach to problems with
nonlinear dependencies in the constraints system.

• The p-solution has many potentials: can be used to computed
the hull solution of parametric interval linear systems,
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