Exact solution to a parametric linear programming problem

Lubomir Kolev* Iwona Skalna**

*Technical University of Sofia, 1000 Sofia, BULGARIA
**AGH University of Science and Technology, Krakow, POLAND
(1) Problem statement
(2) Iterative method
(3) Example
(4) Conclusions

Parametric linear programming (PLP) problem

$$
f(x, p)=c^{T}(p) x(p),
$$

where $c_{i}(p)$ are nonlinear functions of p, and constraint given as a linear interval parametric (LIP) system

$$
A(p) x(p)=b(p), p \in \mathbf{p}
$$

where $a_{i j}(p), b_{i}(p)$ are affine-linear functions of p.

Goal: determine the range

[1] M. Hladik. Optimal value range in interval linear programming. Fuzzy
Optimization and Decision Making, 8:283-294, 2009.

Parametric linear programming (PLP) problem

$$
f(x, p)=c^{T}(p) x(p)
$$

where $c_{i}(p)$ are nonlinear functions of p, and constraint given as a linear interval parametric (LIP) system

$$
A(p) x(p)=b(p), p \in \mathbf{p}
$$

where $a_{i j}(p), b_{i}(p)$ are affine-linear functions of p.

Goal: determine the range

$$
\mathbf{f}^{*}(A(p), b(p), c(p), \mathbf{p})=\square\{f(x, p): A(p) x=b(p), p \in \mathbf{p}\}
$$

[1] M. Hladik. Optimal value range in interval linear programming. Fuzzy Optimization and Decision Making, 8:283-294, 2009.

The endpoints \underline{f}^{*} and \bar{f}^{*} of the range \mathbf{f}^{*} can be determined as the global solutions of the following two optimization problems:

$$
\begin{aligned}
& \underline{f}^{*}=\min \{f(x, p): A(p) x=b(p), p \in \mathbf{p}\} \\
& \underline{f}^{*}=\max \{f(x, p): A(p) x=b(p), p \in \mathbf{p}\}
\end{aligned}
$$

[2] Lubomir Kolev, A class of iterative methods for determining p-solutions of linear interval parametric systems. Reliable Computing, 2016, vol. 22, pp. 26-46.

Iterative method

$\nu=0, \mathbf{p}^{(\nu)}=\mathbf{p}$
while $\operatorname{maxr}\left(\mathbf{p}^{(\nu)}\right) \geqslant \varepsilon_{p}$ do
Find in $\mathbf{p}^{(\nu)}$ an interval \mathbf{f}^{u}, which encloses \underline{f}^{*}
Using \mathbf{f}^{u} and a constraint equation, reduce the domain $\mathbf{p}^{(\nu)}$ to a narrower domain $\mathbf{p}^{(\nu+1)}$
if $q\left(\mathbf{p}^{(\nu)}, \mathbf{p}^{(\nu+1)}\right)>\varepsilon_{q}$ then $\nu=\nu+1$ else
return Only a crude estimation of \underline{f}^{*} has been found end while return \underline{p}^{*} providing \underline{f}^{*} has been found to lie within $\mathbf{p}^{(\nu)}$

Linear form of the parametrized solution (p-solution) of LIP

$$
\mathbf{x}(p)=L p+\mathbf{a}, p \in \mathbf{p}
$$

where L is a real $n \times m$ matrix and $\mathbf{a}=x^{c}+s[-1,1]$ is an n-dimensional interval vector.
[3] Kolev L. (2014) Parameterized solution of linear interval parametric systems. Applied Mathematics and Computation 246: 229-246

Quadratic form of the p-solution

where Q is a three dimensional $n \times m \times m$ array, $\theta_{j}(p)=p_{j}^{2}$, and L
and a have the same meaning as before.
[2] Kolev L., A class of iterative methods for determining p-solutions of linear interval parametric systems. Reliable Computing. 2016. vol. 22. pp. 26-46

Linear form of the parametrized solution (p-solution) of LIP

$$
\mathbf{x}(p)=L p+\mathbf{a}, p \in \mathbf{p}
$$

where L is a real $n \times m$ matrix and $\mathbf{a}=x^{c}+s[-1,1]$ is an n-dimensional interval vector.
[3] Kolev L. (2014) Parameterized solution of linear interval parametric systems. Applied Mathematics and Computation 246: 229-246

Quadratic form of the p-solution

$$
\mathbf{x}(p)=Q \theta(p)+L p+\mathbf{a}, p \in \mathbf{p}
$$

where Q is a three dimensional $n \times m \times m$ array, $\theta_{j}(p)=p_{j}^{2}$, and L and \mathbf{a} have the same meaning as before.
[2] Kolev L., A class of iterative methods for determining p-solutions of linear interval parametric systems. Reliable Computing, 2016, vol. 22, pp. 26-46.

$$
\begin{aligned}
& f(x, p)=c^{T}(p) x(p), p \in \mathbf{p} \\
& \mathbf{x}(p)=L p+\mathbf{a}, p \in \mathbf{p}
\end{aligned}
$$

$$
\mathbf{f}(p)=f^{0}+\sum_{j=1}^{m} L_{j}^{0} p_{j}+s^{0}[-1,1], p \in \mathbf{p},
$$

$$
\begin{aligned}
& f(x, p)=c^{\top}(p) x(p), p \in \mathbf{p}, \\
& \mathbf{x}(p)=\angle p+\mathbf{a}, p \in \mathbf{p} .
\end{aligned}
$$

$$
\mathbf{f}(p)=f^{0}+\sum_{j=1}^{m} L_{j}^{0} p_{j}+s^{0}[-1,1], p \in \mathbf{p},
$$

where $f^{0}=\sum_{i=1}^{n} c_{i} x_{i}^{c}, L_{j}^{0}=\sum_{i=1}^{n} c_{i} L_{i j}, s^{0}=\sum_{i=1}^{n}\left|c_{i}\right| s_{i}$.

Computing fu enclosing f

where $\underline{\lambda}=-\sum_{j=1}^{m}\left|L_{j}^{0}\right|$, and $\mathbf{g}=f^{0}+s^{0}[-1,1]$

$$
\begin{aligned}
& f(x, p)=c^{T}(p) x(p), p \in \mathbf{p}, \\
& \mathbf{x}(p)=\angle p+\mathbf{a}, p \in \mathbf{p} .
\end{aligned}
$$

$$
\mathbf{f}(p)=f^{0}+\sum_{j=1}^{m} L_{j}^{0} p_{j}+s^{0}[-1,1], p \in \mathbf{p},
$$

where $f^{0}=\sum_{i=1}^{n} c_{i} x_{i}^{c}, L_{j}^{0}=\sum_{i=1}^{n} c_{i} L_{i j}, s^{0}=\sum_{i=1}^{n}\left|c_{i}\right| s_{i}$.

Computing f^{μ} enclosing f^{*}

$$
\underline{\mathbf{f}}^{*} \in \mathbf{f}^{u}=\underline{\lambda}+\mathbf{g},
$$

where $\underline{\lambda}=-\sum_{j=1}^{m}\left|L_{j}^{0}\right|$, and $\mathbf{g}=f^{0}+s^{0}[-1,1]$.

$$
\begin{aligned}
& \mathbf{f}(p)=f^{0}+\sum_{j=1}^{m} L_{j}^{0} p_{j}+s^{0}[-1,1], p \in \mathbf{p}, \\
& \underline{\mathbf{f}}^{*} \in \mathbf{f}^{u}=\underline{\lambda}+\mathbf{g} .
\end{aligned}
$$

Constraint equation

$$
\sum_{j=1}^{m} L_{j}^{0} p_{j}+s=d,
$$

where $p_{\in} \mathbf{p}_{\mathbf{j}}, s \in s^{0}[-1,1], d \in s^{0}[-1,1]-\sum_{j=1}^{m}\left|L_{j}^{0}\right|$.

$$
\begin{aligned}
& \mathbf{f}(p)=f^{0}+\sum_{j=1}^{m} L_{j}^{0} p_{j}+s^{0}[-1,1], p \in \mathbf{p}, \\
& \underline{\mathbf{f}}^{*} \in \mathbf{f}^{u}=\underline{\lambda}+\mathbf{g} .
\end{aligned}
$$

Constraint equation

$$
\sum_{j=1}^{m} L_{j}^{0} p_{j}+s=d,
$$

where $p_{\in} \mathbf{p}_{\mathbf{j}}, s \in s^{0}[-1,1], d \in s^{0}[-1,1]-\sum_{j=1}^{m}\left|L_{j}^{0}\right|$.

Constraint propagation to narrow \mathbf{p}

We select the index i, which corresponds to the maximum component $\left|L_{j}^{0}\right|, j=1, \ldots, m$.

$$
p_{i}=b / L_{i}^{0}
$$

where $b=d-\sum_{j \neq i} L_{j}^{0} p_{j}+s$.

Contracted domain

Constraint propagation to narrow \mathbf{p}

We select the index i, which corresponds to the maximum component $\left|L_{j}^{0}\right|, j=1, \ldots, m$.

$$
p_{i}=b / L_{i}^{0}
$$

where $b=d-\sum_{j \neq i} L_{j}^{0} p_{j}+s$.
Contracted domain

$$
\mathbf{p}^{\prime}=\mathbf{p} \cap\left(\mathbf{b} / L_{i}^{0}\right)
$$

Example. We consider a special case of PLP with $n=3$ and $c=(1,1,1)^{T}$:

$$
f(x, p)=\sum_{i=1}^{3} x_{i}(p)
$$

subject to $A(p) x=b(p), p \in \mathbf{p}$, where

$$
A(p)=\left[\begin{array}{ccc}
p_{1} & p_{2}+1 & -p_{3} \\
-p_{2} & -3 & p_{1} \\
2-p_{3} & 4 p_{2}+1 & 1
\end{array}\right], \quad b(p)=\left[\begin{array}{c}
2 p_{1} \\
p_{3}-1 \\
-1
\end{array}\right] .
$$

The parameter vectors are of the form

$$
\mathbf{p}(\rho)=p^{c}+\rho\left[-p^{\Delta}, p^{\Delta}\right]
$$

where $p^{c}=(0.5,0.5,0.5)^{T}, p^{\Delta}=(0.5,0.5,0.5)^{T}$, and ρ is a variable.

Table: Results for $\operatorname{PLP}\left(\varepsilon_{p}=\varepsilon_{q}=1.0 e^{-6}\right)$

	inf	sup	inf			sup		
			p_{3}	p_{1}	p_{2}	p_{3}		
0.02	-1.256		0.510	0.510	0.490	0.490	0.490	0.510
0.05	-1.285	-1.193	0.525	0.525	0.475	0.475	0.475	0.525
0.1	-1.336	-1.152	0.550	0.550	0.450	0.450	0.450	0.550
0.15	-1.390	-1.114	0.575	0.575	0.425	0.425	0.425	0.575
0.17	-1.413	-1.099	0.585	0.585	0.415	0.415	0.415	0.585
0.18	-1.424	-1.092	0.590	0.590	0.410	0.410	0.410	0.590
0.2	-2.015	-0.463	\mathbf{p}	\mathbf{p}	\mathbf{p}	\mathbf{p}	\mathbf{p}	\mathbf{p}

If the method fail (only crude bounds are produced), then we can still obtain relatively good bounds on \mathbf{f}^{*} from the parametric solution and the equation:

$$
\mathbf{f}^{*} \subseteq \mathbf{f}=f_{i}^{0}+\sum_{j=1}^{m}\left|L_{j}^{0}\right|[-1,1]+s^{0}[-1,1] .
$$

Table: Bounds on \mathbf{I}^{*}

	Exact solution		Iterative method	
0.3	-1.5736	-1.0177	-1.8473	-0.6343
0.4	-1.7146	-0.9542	-2.3684	-0.1181
0.5	-1.8724	-0.8853	-3.3717	0.8779

- The proposed iterative method yields sharp bound on the exact solution to a parametric linear programming problem assuming that the initial intervals are relatively narrow.
- The limitations can be overcome by using some more sophisticated methods for computing the upper and lower bound on the exact bounds or using some more sophisticated constraint satisfaction technique.
- We can also use better methods for computing the p-solution, for example using quadratic approximation.
- It is possible extend the prosposed approach to problems with nonlinear dependencies in the constraints system.
- The p-solution has many potentials: can be used to computed the hull solution of parametric interval linear systems,

