Inner approximation of a capture set

T. Le Mézo, L. Jaulin, B. Zerr Lab-STICC, ENSTA-Bretagne, UBO SWIM, Lyon, June 2016

Capture set

Definition. Given the state equation $\dot{x} = f(x)$. Let φ be the flow map.

The *capture* set of the *target* $\mathbb{T} \subset \mathbb{R}^n$ is:

$$\overleftarrow{\mathbb{T}} = \{ \mathsf{x}_0 \mid \exists t \geq 0, \varphi(t, \mathsf{x}_0) \in \mathbb{T} \}.$$

Labyrint

Capture set
Labyrint
Computing T
Applications

An *interval* is a *domain* which encloses a real number. A *polygon* is a *domain* which encloses a vector of \mathbb{R}^n . A *labyrint* is a *domain* which encloses a path.

Labyrints can be made more accurate by adding polygones

Or using doors instead of a graph

Here, a labyrint ${\mathscr L}$ is composed of

- ullet A paving ${\mathscr P}$
- ullet A polygon for each box of ${\mathscr P}$
- Doors between adjacent boxes

The set of labyrints forms a lattice with respect to \subset . $\mathscr{L}_a \subset \mathscr{L}_b$ means :

- the boxes of \mathcal{L}_a are subboxes of the boxes of \mathcal{L}_b .
- ullet The polygones of \mathscr{L}_a are included in those of \mathscr{L}_b
- The doors of \mathcal{L}_a are thinner than those of \mathcal{L}_b .

Note that yellow polygons are convex.

Inner approximation of $\overleftarrow{\mathbb{T}}$

Main idea: Compute an outer approximation of the complementary of $\overleftarrow{\mathbb{T}}$:

$$\overline{\overline{\mathbb{T}}} = \{ \mathbf{x}_0 \mid \forall t \geq 0, \varphi(t, \mathbf{x}_0) \notin \mathbb{T} \}$$

Thus, we search for a path that never reach \mathbb{T} .

Target contractor. If a box [x] of $\mathscr P$ is included in $\mathbb T$ then remove [x] and close all doors entering in [x].

Flow contractor. For each box [x] of \mathscr{P} , we contract the polygon using the constraint $\dot{x} = f(x)$.

Inner propagation

Outer propagation

An interpretation can be given only when the fixed point is reached.

Car on the hill

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = 9.81 \sin\left(\frac{11}{24} \cdot \sin x_1 + 0.6 \cdot \sin(1.1 \cdot x_1)\right) - 0.7 \cdot x_2 \end{cases}$$

$$\begin{array}{l} \text{Research box } \mathbb{X}_0 = [-1,13] \times [-10,10] \\ \text{Blue: } \mathbb{T}_{out} = \overline{\mathbb{X}_0}; \text{ Red: } \mathbb{T}_{in} = [2,9] \times [-1,1] \\ \end{array}$$

Combined with an outer propagation

Van der Pol system

Consider the system

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = (1 - x_1^2) \cdot x_2 - x_1 \end{cases}$$

and the box $\mathbb{X}_0 = [-4,4] \times [-4,4]$.

$$\textbf{f} \rightarrow -\textbf{f}$$
 ; $\mathbb{T} = \overline{\mathbb{X}_0} \cup [-0.1, 0.1]^2.$

$$f \rightarrow -f$$
 ; $\mathbb{T}_{out} = \overline{\mathbb{X}_0}$; $\mathbb{T}_{in} = [0.5, 1]^2.$

Combined with an outer propagation

