Inner approximation of a capture set

T. Le Mézo, L. Jaulin, B. Zerr
Lab-STICC, ENSTA-Bretagne, UBO
SWIM, Lyon, June 2016
Inner approximation of a capture set
Capture set

Inner approximation of a capture set
Definition. Given the state equation $\dot{x} = f(x)$. Let φ be the flow map. The *capture* set of the target $T \subset \mathbb{R}^n$ is:

$$\overline{T} = \{x_0 \mid \exists t \geq 0, \varphi(t, x_0) \in T\}.$$
Inner approximation of a capture set
Inner approximation of a capture set
An *interval* is a *domain* which encloses a real number.

A *polygon* is a *domain* which encloses a vector of \mathbb{R}^n.

A *labyrinth* is a *domain* which encloses a path.
Inner approximation of a capture set
Labyrinths can be made more accurate by adding polygons.
Or using doors instead of a graph
Here, a **labyrinth** \mathcal{L} is composed of
- A paving \mathcal{P}
- A polygon for each box of \mathcal{P}
- Doors between adjacent boxes
The set of labyrinths forms a lattice with respect to \subset. $\mathcal{L}_a \subset \mathcal{L}_b$ means:

- the boxes of \mathcal{L}_a are subboxes of the boxes of \mathcal{L}_b.
- The polygons of \mathcal{L}_a are included in those of \mathcal{L}_b.
- The doors of \mathcal{L}_a are thinner than those of \mathcal{L}_b.
Note that yellow polygons are convex.
Inner approximation of a capture set
Main idea: Compute an outer approximation of the complementary of \overleftarrow{T}:

$$\overleftarrow{T} = \{x_0 \mid \forall t \geq 0, \varphi(t, x_0) \notin T\}$$

Thus, we search for a path that never reach T.
Target contractor. If a box $[x]$ of \mathcal{P} is included in T then remove $[x]$ and close all doors entering in $[x]$.
Flow contractor. For each box $[x]$ of \mathcal{P}, we contract the polygon using the constraint $\dot{x} = f(x)$.

Inner approximation of a capture set
Inner propagation
Inner approximation of a capture set
Outer propagation
An interpretation can be given only when the fixed point is reached.
Car on the hill

Inner approximation of a capture set
\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= 9.81 \sin \left(\frac{11}{24} \cdot \sin x_1 + 0.6 \cdot \sin(1.1 \cdot x_1) \right) - 0.7 \cdot x_2
\end{align*}
\]
Research box $X_0 = [-1, 13] \times [-10, 10]$
Blue: $T_{out} = X_0$; Red: $T_{in} = [2, 9] \times [-1, 1]$
Combined with an outer propagation
Van der Pol system
Consider the system

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= (1 - x_1^2) \cdot x_2 - x_1
\end{align*}
\]

and the box \(X_0 = [-4, 4] \times [-4, 4] \).
\(f \rightarrow -f \); \(T = \overline{X_0} \cup [-0.1, 0.1]^2 \).
\(f \rightarrow -f \; ; \; \mathbb{T}_{out} = \overline{X} ; \; \mathbb{T}_{in} = [0.5, 1]^2. \)
Combined with an outer propagation
Inner approximation of a capture set