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Motivation

Motivation

" Simplifying assupmtions Nominal
Process
— Model

A AN i = f(z,u)

i€ F(z,p,u) ,x(0) € [x0],p € [p]

Non linear , uncertain

Does the nominal controller stay efficient
When applied to~the real process?

Nominal Controller
w= K (x,Zycf)

Objective: Propose a numerical technique able to evaluate a priori the expected
performances of the nominal controller when applied to the real process .
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Problem formulation

Problem formulation

Consider a complex system
x € F(x,p,u), x(th) € XHCR", pePCRP

To design a feedback control
u= k(X7 Xref)

A simple nominal model is needed

x = f(x,u)

Is this nominal controller stay efficient when applied to the real system ?

— To check that ,we propose a technique based on reachability analysis in order to
evaluate the performance of the nominal controller.
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Problem formulation

Reachability analysis

The controlled real system
x € F(x,p,K(x)), x(to) € Xp, p€EP
We can compute an over-approximation of the reachable set denote here by:

[Rx] ([to, t¢], P, X0, to)

F(x,p. K(x))
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Problem formulation

Reachability analysis

The controlled real system
x € F(x,p,K(x)), x(to) € Xp, p€EP
We can compute an over-approximation of the reachable set denote here by:

[Rx] ([to, t¢], P, X0, to)

F(x,p. K(x))

[Rx] ([to, tr], P, X0, to) contains all possible solution x(t) over the time interval [to, tf]
generated from the set of initial conditions Xp at the initial time ty and for all possible
parameter vector p € P
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Reachability analysis

To compute the over-approximation of the reachable set (for NL systems), we use:
o Interval Taylor methods, [/V.S.Nedialkov],[R.Rihm|,[R.J.Lohner]
° , [N.Ramdani, N.Meslem]
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Problem formulation

Reachability analysis

To compute the over-approximation of the reachable set (for NL systems), we use:
o Interval Taylor methods, [/V.S.Nedialkov],[R.Rihm|,[R.J.Lohner]
° , [N.Ramdani, N.Meslem]

x € F(x,p,u), x(to) € o CR", peP CRP,dm=n

/\.

Interval Taylor methods

Interval integration using Taylor expansion: Transform the uncertain system into two deterministic
. systems : x(t) € [ x(t),x(t) ]
-1
=h kKl (15
D] = Dyl Y W] +hEFH ([5])
i=1
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© Interval Control Verification Technique
@ Step 1: set-membership Formulation of the desired specifications
o Step 2: Compute an outer-approximation of the reachable set of the closed-loop
@ Step 3: Set membership inclusion tests
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membership Formulation of the
Interval Control Verification Technique

Principle of the technique

The three main steps of the technique are:

© Step 1 : Rewrite the desired control specifications as set- membership criteria
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Interval Control Verification Technique

Principle of the technique

The three main steps of the technique are:

© Step 1 : Rewrite the desired control specifications as set- membership criteria

@ Step 2 : Compute an outer-approximation of the reachable set of the closed-loop
system.

© Step 3 : Set-membership tests are used to verify either the desired specifications
are satisfied by all the possible behaviors of the closed-loop system.
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Interval Control Verification Technique

Step 1: set-membership Formulation of the desired specification

First specification

o Target set 7 : the desired behavior of the system at the steady state can be
characterized by a set of state vector called target set. The ultimate bound of the
closed-loop system must be enclosed in the target set

[Ra] (tr.P. Xo,to)

[

X
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Interval Control Verification Technique

Step 1: set-membership Formulation of the desired specification

Second specification

° : in this context, the rapidity of the system is measured by its
reaching-time t,, which is equivalent to the classical settling time. More formally,
t, is the time instant for which:

[Rx] (tr, P, X0, t0) C Ts
and Vt > t, we get:

[RX] ([tf7 t],P, X07 tr) - 7—5

[Ra](ts, P, Xo, to)
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Interval Control Verification Technique

Step 1: set-membership Formulation of the desired specification

Third specification

° . denoted by Uy, the safety set can be characterized by the state
constraints and/or by authorized overshoot of the system outputs,. . . . So, the
nominal controller must ensures the following inclusion:

[Rx] ([to, te], P, Xo, tr) C Ux

U,

/

[Ra] (. P. Xo, to)
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Interval Control Verification Technique

Step 1: set-membership Formulation of the desired specification

Fourth specification

o Feasible set U4, : denoted by U, in practice, actuators can not generated a
control vector with arbitrary values in R™. So, the set can be defined by the
input constraints and the nominal controller must satisfy:

k(x, Xref) € Uy

Umaz

Umin
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Step 1: set-membership Formulation of the « ed spe ons
Interval Control Verification Technique Compute an outer-approximation of the reachable set of the closed-loop
Set membership inclt

Step 2: Compute an outer-approximation of the reachable set of the closed-loop

We compute an over-approximation of the reachable set of the closed-loop system
that contains all possible solution x(t) generated from the set of initial conditions Xp
and for all possible parameter vector p € P.
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Step 1: set-membership Formulation of the « ed spe ons
Interval Control Verification Technique Compute an outer-approximation of the reachable set of the closed-loop
Set membership inclt

Step 2: Compute an outer-approximation of the reachable set of the closed-loop

We compute an over-approximation of the reachable set of the closed-loop system
that contains all possible solution x(t) generated from the set of initial conditions Xp
and for all possible parameter vector p € P.

Transitional regime
[RX] ([t07tf]1P7X07t0) te [t07tf]
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and for all possible parameter vector p € P.
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Step 2: Compute an outer-approximation of the reachable set of the closed-loop

We compute an over-approximation of the reachable set of the closed-loop system
that contains all possible solution x(t) generated from the set of initial conditions Xp
and for all possible parameter vector p € P.

Transitional regime
[RX] ([t07tf]1P7X07t0) te [t07tf]

At reaching time
[Rx] (tr, P, Xo, t0) t=1tr

Steady regime
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E membership Formulation of the
Interval Control Verification Technique e mpute an outer-approxi
et membership inclusion tests

Step 3: Set membership inclusion tests

In this context, a nominal controller is said efficient if all set-membership inclusion
tests are true:
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Step 3: Set membership inclusion tests

In this context, a nominal controller is said efficient if all set-membership inclusion
tests are true:

° [Rx] ([tr~ Pa X07 tO) C 7—5
(The ultimate bound of the closed-loop system is enclosed in the target set).
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S et-membership Formulation of the «
Interval Control Verification Technique e ompute an outer-appro
Set membership inclusion tests

Step 3: Set membership inclusion tests

In this context, a nominal controller is said efficient if all set-membership inclusion
tests are true:

° [Rx] ([tr~ Pa X07 tO) C 7—5
(The ultimate bound of the closed-loop system is enclosed in the target set).

o [Rul([tr, t], P, X0, t) C Ts
(The target set is achieved at the reaching time).
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Step 3: Set membership inclusion tests

In this context, a nominal controller is said efficient if all set-membership inclusion
tests are true:

° [Rx] ([tr~ Pa X07 tO) C 7—5
(The ultimate bound of the closed-loop system is enclosed in the target set).

o [Rul([tr, t], P, X0, t) C Ts
(The target set is achieved at the reaching time).

(safety set: state constraints are non violated).
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‘wlspi set-membership Formulation of the
Interval Control Verification Technique e ompute an o pproximation of t
Set membership inclusion tests

Step 3: Set membership inclusion tests

In this context, a nominal controller is said efficient if all set-membership inclusion
tests are true:

° [Rx] ([tr~ Pa X07 tO) C 7—5
(The ultimate bound of the closed-loop system is enclosed in the target set).

o [Rul([tr, t], P, X0, t) C Ts
(The target set is achieved at the reaching time).

(safety set: state constraints are non violated).

° k(xzxref) € Uy
(Feasible set : all input constraints are respected).
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Simulation example
Case study: Wind turbine Experimental Example

Simulation example

Let's consider the Electric Wind Power Generation (EWPG) system defined by the
following complete model:

v=—av(v—1)+n

_ 1 20 V3 _ Be,, _ Keir
w= 2Jequﬂrr pr W
ip=Y_ R
f*}L{. Lff
i elf _ R U,

Ia = Ftw— 72ia— 2

[v, w, if, is] is the state vector, u = [Uf, U,] T is the input, the measurements are
uncertain

V E Vm+[—€,+€6] € =0.1

W E Wm+ [—€w, +ew] ew =0.1

ir € ifm + [—6,'f,—|-6,'f] €if = 0.1

ig € gy, + [76,'g,+€,'g] €ig = 0.1

Uncertain parameters : p € [1.1875,1.3125] , B, € [0.0142,0.0158]
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Simulation example
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Case study: Wind turbine

al Example

Simulation example

Parameters Value
Turbine Radio, R 4.0 m
Turbine inertia, Jp 1.5 lcgm2
Wind speed range 2— 12 ms— T
Transmission ratio, Ny 7.5
Wind density, p 1.25 kgm~—
DC generator inertia, Je 0.3 kgm?
Maximum DC generator output power, Pyen 6.0 kW
Rated field voltage, Vy 120 V'
Rated armature voltage, Vi, 240 V
Rated field flow, ¢ ¢ 0.12 Wb
Rated field current flow, I 2A
Field inductance, L ¢ 60 mH
Field resistance, Ry 60 Q2
Armature inductance, L, 10 mH
Armature r ance, Rq 2.0
Friction constant, B¢
Induced EFM constant, K,
Wind speed time constant, o,

Figure: Table of numerical values
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Simulation example

Case study: Wind turbine Experimental Example

Simulation example

The objective is to maximize the power generated by the wind turbine by ensuring the
following performance criterion

Z = (Aoptv—rw) =0
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Simulation example
Case study: Wind turbine Experimental Example

Simulation example

The objective is to maximize the power generated by the wind turbine by ensuring the
following performance criterion

Z = (Aoptv—rw) =0

based on the linearized model around the operating point
(vo, wo, ifo, igo) = (5.3m/s,82.48rad /s, 2A,185.8A) ,ug = (120V/,289.28V), an LQR
controller u = —k(x — xo) + g is designed.

The objective of the controller is to minimize the criterion Z and make it close to 0.
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Simulation example

Case study: Wind turbine Experimental Example

Simulation example

The objective is to maximize the power generated by the wind turbine by ensuring the
following performance criterion

Z = (Aoptv—rw) =0

based on the linearized model around the operating point

(vo, wo, ifo, igo) = (5.3m/s,82.48rad /s, 2A,185.8A) ,ug = (120V/,289.28V), an LQR
controller u = —k(x — xg) + up is designed.

The objective of the controller is to minimize the criterion Z and make it close to 0.
The LQR controller is obtained with the following weighting matrices :

A2 —rXopt
— pt op — 10°
Q (_r SO ) R =10
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Simulation example

Case study: Wind turbine Experimental Example

Simulation example

The objective is to maximize the power generated by the wind turbine by ensuring the
following performance criterion

Z = (Aoptv—rw) =0

based on the linearized model around the operating point
(vo, wo, ifo, igo) = (5.3m/s,82.48rad /s, 2A,185.8A) ,ug = (120V/,289.28V), an LQR
controller u = —k(x — xo) + g is designed.

The objective of the controller is to minimize the criterion Z and make it close to 0.
The LQR controller is obtained with the following weighting matrices :

Q= ( Aopt *r);"f’f) R =10°

—ropt r
Desired specification
Target set Z €[-0.3,0.3]
Reaching time tr <8s
Safety set (v,w,ir, ig) € ([1,15],[60, 160], [0, 7], [0, 215])
Feasible set (Uf, Ua) € ([0,121], [0, 291])

Table: Table of desired specifications
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Simulation example

Case study: Wind turbine Experimental Example

Simulation example

Compute an outer-approximation of the reachable set of the closed-loop system
(upper and lower bounding systems).

oukkas

U=—0a(0— V) +ﬁ
w= Tpl\hm G Tw— % "

- L Ry
ip =LK1 (04 —v0) + Ko (W + € — w0) + Ka(if + €;7) + Kaiy + &) — 11f,) — Tff’f

L

£

H Kety Ra

U — r—‘z” - 7(K1(v+ ey — v0) + Ko(w + €, — wo) + Ka(if +€if) + Ka(ia +€jq) — 11g,)

_ Beyy J’
: [ Ay P ) N
ir=1; L(Ky (2 + €, — v0) + Ko (@ + € — wo) + K3 (if + &) + Ka(ia +€g) — 115,) — ﬁlf

Kei R S o ) ‘
= lw—Rei, — L (Ky(T+€ — v0) + Ko (T + & — wo) + Ka i + €¢) + Kaliy + €50) — i)

=
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Case study: Wind turbine

Simulation results

v (mis)

w (radis)
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Case study: Wind turbine

Simulation results

Yy

1 |

V)

te)
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Simulation example
Experimental Example

Case study: Wind turbine

Case with big uncertainty of sensors: We will take a case of sensors that gives
erroneous measurement, in this case with our technique, we can not conclude about
the efficiency of the controller.
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Simulation example

Case study: Wind turbine Epeieiie] Eemrie

Test bench
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Case study: Wind turbine Epeieiie] Eemrie

Experimental model

The experimental wind turbine system is defined by the model:

v=—av(v—w)+n
3

2v3 _ [Bel,, _ Keg:
w Je w Je lg

= L
W = 5pmr
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Case study: Wind turbine Epeieiie] Eemrie

Experimental model

The experimental wind turbine system is defined by the model:

v=—av(v—w)+n
= Lo 2vd  [Bl  Keg,
W= Py = oW le

[v, w] is the state vector, u = ig is the input, the measurements are uncertain
V E Vm+[—€,+€6] € =0.1

W E Wm+ [—€w,+en] en =01

Uncertain parameters : p € [1.1875,1.3125] , Be € [0.99,1.21] x 105
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Simulation example

Case study: Wind turbine Epeieiie] Eemrie

Experimental model

The experimental wind turbine system is defined by the model:

v=—av(v—w)+n
= Lo 2vd  [Bl  Keg,
W= Py = oW le

[v, w] is the state vector, u = ig is the input, the measurements are uncertain
V E Vm+[—€,+€6] € =0.1

W E Wm+ [—€w,+en] en =01
Uncertain parameters : p € [1.1875,1.3125] , Be € [0.99,1.21] x 105

As before the LQR controller is designed by taking the linearized model around the
operating point xg = (2.1m/s, 156rad/s), up = 9.36 x 1074,

oukkas Interval technii to check the performance of control laws ied to wind turbines ~ SWIM 2016



Simulation example

Case study: Wind turbine Epeieiie] Eemrie

Experimental model

The experimental wind turbine system is defined by the model:

v=—av(v—w)+n
= Lo 2vd  [Bl  Keg,
W= Py = oW le

[v, w] is the state vector, u = ig is the input, the measurements are uncertain
V E Vm+[—€,+€6] € =0.1

W E Wm+ [—€w,+en] en =01

Uncertain parameters : p € [1.1875,1.3125] , Be € [0.99,1.21] x 105

As before the LQR controller is designed by taking the linearized model around the
operating point xg = (2.1m/s, 156rad/s), up = 9.36 x 1074,

Desired specifications
Target set Z €[-0.3,0.3]
Reaching time tr < 3s
Safety set (v,w) € ([1, 3], [50,190])
Feasible set ig €[0,0.02]

Table: Table of desired specifications
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Simulation example
Case study: Wind turbine Epeieiie] Eemrie

Experimental example

Compute an outer-approximation of the reachable set of the closed-loop system.

V=—a(V—1)+T7

_ 23 _ S o
ipwrsz%—’j—:w—%:(Kl(v—i-e\,—vo)+K2(W+ew—Wo)—uo)
—av(v—w)+1n

3
= ﬁﬁ”ﬂcpi — Sew JKj:(Kl(!JrSV — ) + Ko(W + €, — wo) — o)

I<- €
Il

€
|
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Simulation example
Experimental Example

Case study: Wind turbine

Simulation results

w (radls)

v (mis)
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Simulation example

Case study: Wind turbine Epeieiie] Eemrie

Experimental results
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Conclusion and perspectives

Conclusion and perspectives

o Conclusion: we proposed an interval technique based on reachability analysis to
evaluate a priori the performance of nominal controller applied to real systems.
To do that, a list of set-membership inclusion tests were used to verify the
desired specifications.
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Conclusion and perspectives

Conclusion and perspectives

o Conclusion: we proposed an interval technique based on reachability analysis to
evaluate a priori the performance of nominal controller applied to real systems.
To do that, a list of set-membership inclusion tests were used to verify the
desired specifications.

o Perspectives: Use the reachability analysis to synthesize directly robust
controllers. a technique based on set inversion via interval analysis techniques
coupled with reachability analysis methods will be developed.
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