UNIVERSITÉ Grenoble Alpes

Interval technique to check the performance of control laws applied to wind turbines

Nassim Loukkas, Nacim Meslem, John-Jairo Martinez-Molina

Lyon, June 20, 2016

SWIM 2016

Outline

Motivation

Problem formulation

Interval Control Verification Technique

- Step 1: set-membership Formulation of the desired specifications
- Step 2: Compute an outer-approximation of the reachable set of the closed-loop
- Step 3: Set membership inclusion tests

Case study: Wind turbine

- Simulation example
- Experimental Example

Problem formulation Interval Control Verification Technique Case study: Wind turbine Conclusion and perspectives

Outline

Motivation

Problem formulation

Interval Control Verification Technique

- Step 1: set-membership Formulation of the desired specifications
- Step 2: Compute an outer-approximation of the reachable set of the closed-loop
- Step 3: Set membership inclusion tests

4 Case study: Wind turbine

- Simulation example
- Experimental Example

Problem formulation Interval Control Verification Technique Case study: Wind turbine Conclusion and perspectives

Problem formulation Interval Control Verification Technique Case study: Wind turbine Conclusion and perspectives

Problem formulation Interval Control Verification Technique Case study: Wind turbine Conclusion and perspectives

Problem formulation Interval Control Verification Technique Case study: Wind turbine Conclusion and perspectives

Problem formulation Interval Control Verification Technique Case study: Wind turbine Conclusion and perspectives

Motivation

Objective: Propose a numerical technique able to evaluate a priori the expected performances of the nominal controller when applied to the real process.

Outline

Motivation

Problem formulation

Interval Control Verification Technique

- Step 1: set-membership Formulation of the desired specifications
- Step 2: Compute an outer-approximation of the reachable set of the closed-loop
- Step 3: Set membership inclusion tests

4 Case study: Wind turbine

- Simulation example
- Experimental Example

Problem formulation

Consider a complex system

 $\dot{\mathbf{x}} \in \mathcal{F}(\mathbf{x},\mathbf{p},\mathbf{u}), \quad \mathbf{x}(t_0) \in \mathcal{X}_0 \subset \mathbb{R}^n, \quad \mathbf{p} \in \mathcal{P} \subset \mathbb{R}^p$

To design a feedback control

 $u = k(x, x_{ref})$

A simple nominal model is needed

 $\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u})$

Is this nominal controller stay efficient when applied to the real system ?

To check that ,we propose a technique based on reachability analysis in order to evaluate the performance of the nominal controller.

Problem formulation

Consider a complex system

$$\dot{\mathbf{x}} \in \mathcal{F}(\mathbf{x},\mathbf{p},\mathbf{u}), \quad \mathbf{x}(t_0) \in \mathcal{X}_0 \subset \mathbb{R}^n, \quad \mathbf{p} \in \mathcal{P} \subset \mathbb{R}^p$$

To design a feedback control

$$\mathbf{u} = \mathbf{k}(\mathbf{x}, \mathbf{x}_{ref})$$

A simple nominal model is needed

 $\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u})$

Is this nominal controller stay efficient when applied to the real system ?

To check that ,we propose a technique based on reachability analysis in order to evaluate the performance of the nominal controller.

Problem formulation

Consider a complex system

$$\dot{\mathbf{x}} \in \mathcal{F}(\mathbf{x},\mathbf{p},\mathbf{u}), \quad \mathbf{x}(t_0) \in \mathcal{X}_0 \subset \mathbb{R}^n, \quad \mathbf{p} \in \mathcal{P} \subset \mathbb{R}^p$$

To design a feedback control

$$\mathbf{u} = \mathbf{k}(\mathbf{x}, \mathbf{x}_{ref})$$

A simple nominal model is needed

$$\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u})$$

Is this nominal controller stay efficient when applied to the real system ?

⇒ To check that ,we propose a technique based on reachability analysis in order to evaluate the performance of the nominal controller.

Problem formulation

Consider a complex system

$$\dot{\mathbf{x}} \in \mathcal{F}(\mathbf{x},\mathbf{p},\mathbf{u}), \quad \mathbf{x}(t_0) \in \mathcal{X}_0 \subset \mathbb{R}^n, \quad \mathbf{p} \in \mathcal{P} \subset \mathbb{R}^p$$

To design a feedback control

$$\mathsf{u} = \mathsf{k}(\mathsf{x},\mathsf{x}_{\mathsf{ref}})$$

A simple nominal model is needed

$$\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u})$$

Is this nominal controller stay efficient when applied to the real system ?

⇒ To check that ,we propose a technique based on reachability analysis in order to evaluate the performance of the nominal controller.

Problem formulation

Consider a complex system

$$\dot{\mathbf{x}} \in \mathcal{F}(\mathbf{x}, \mathbf{p}, \mathbf{u}), \quad \mathbf{x}(t_0) \in \mathcal{X}_0 \subset \mathbb{R}^n, \quad \mathbf{p} \in \mathcal{P} \subset \mathbb{R}^p$$

To design a feedback control

$$\mathsf{u} = \mathsf{k}(\mathsf{x},\mathsf{x}_{\mathsf{ref}})$$

A simple nominal model is needed

$$\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u})$$

Is this nominal controller stay efficient when applied to the real system ?

 \implies To check that ,we propose a technique based on **reachability analysis** in order to **evaluate** the performance of the nominal controller.

Reachability analysis

The controlled real system

$$\dot{\mathbf{x}} \in \mathcal{F}(\mathbf{x}, \mathbf{p}, \mathbf{K}(\mathbf{x})), \quad \mathbf{x}(t_0) \in \mathcal{X}_0, \quad \mathbf{p} \in \mathcal{P}$$

We can compute an over-approximation of the reachable set denote here by:

 $[\mathcal{R}_x]([t_0,t_f],\mathcal{P},\mathcal{X}_0,t_0)$

 $[\mathcal{R}_x]([t_0, t_f], \mathcal{P}, \mathcal{X}_0, t_0)$ contains all possible solution $\mathbf{x}(t)$ over the time interval $[t_0, t_f]$ generated from the set of initial conditions \mathcal{X}_0 at the initial time t_0 and for all possible parameter vector $\mathbf{p} \in \mathcal{P}$

Reachability analysis

The controlled real system

$$\dot{\mathbf{x}} \in \mathcal{F}(\mathbf{x}, \mathbf{p}, \mathbf{K}(\mathbf{x})), \quad \mathbf{x}(t_0) \in \mathcal{X}_0, \quad \mathbf{p} \in \mathcal{P}$$

We can compute an over-approximation of the reachable set denote here by:

 $[\mathcal{R}_x]([t_0,t_f],\mathcal{P},\mathcal{X}_0,t_0)$

 $[\mathcal{R}_x]([t_0, t_f], \mathcal{P}, \mathcal{X}_0, t_0)$ contains all possible solution $\mathbf{x}(t)$ over the time interval $[t_0, t_f]$ generated from the set of initial conditions \mathcal{X}_0 at the initial time t_0 and for all possible parameter vector $\mathbf{p} \in \mathcal{P}$

Reachability analysis

To compute the over-approximation of the reachable set (for NL systems), we use:

- Interval Taylor methods, [N.S.Nedialkov], [R.Rihm], [R.J.Lohner]
- Comparison theorems for differential inequalities, [N.Ramdani, N.Meslem]

 $\dot{\mathbf{x}} \in \mathcal{F}(\mathbf{x},\mathbf{p},\mathbf{u}), \quad \mathbf{x}(t_0) \in \mathcal{X}_0 \subset \mathbb{R}^n, \quad \mathbf{p} \in \mathcal{P} \subset \mathbb{R}^p, \operatorname{dim} = n$

Interval Taylor methods

Interval integration using Taylor expansion:

$$[x_{j+1}] = [x_{j+1}] + \sum_{i=1}^{k-1} h_j^i \mathcal{F}^{[i]}([x_j]) + h_j^k \mathcal{F}^{[k]}([\tilde{x}_j])$$

Comparison theorems for differential inequalities

Transform the uncertain system into two deterministic systems : $x(t) \in [\underline{x}(t), \overline{x}(t)]$

$$\begin{cases} \dot{\overline{x}} = \overline{\mathcal{F}}(\underline{x}, \overline{x}, \underline{p}, \overline{p}, u) \\ \dot{\underline{x}} = \underline{\mathcal{F}}(\underline{x}, \overline{x}, \underline{p}, \overline{p}, u) , \operatorname{dim} = 2n \end{cases}$$

Reachability analysis

To compute the over-approximation of the reachable set (for NL systems), we use:

- Interval Taylor methods, [N.S.Nedialkov], [R.Rihm], [R.J.Lohner]
- Comparison theorems for differential inequalities, [N.Ramdani, N.Meslem]

 $\dot{\mathbf{x}} \in \mathcal{F}(\mathbf{x}, \mathbf{p}, \mathbf{u}), \quad \mathbf{x}(t_0) \in \mathcal{X}_0 \subset \mathbb{R}^n, \quad \mathbf{p} \in \mathcal{P} \subset \mathbb{R}^p, \operatorname{dim} = n$

Interval Taylor methods

Interval integration using Taylor expansion:

Comparison theorems for differential inequalities

Transform the uncertain system into two deterministic systems : $x(t) \in [\underline{x}(t), \overline{x}(t)]$

$$\begin{cases} \dot{\overline{x}} = \overline{\mathcal{F}}(\underline{x}, \overline{x}, \underline{p}, \overline{p}, u) \\ \dot{\underline{x}} = \underline{\mathcal{F}}(\underline{x}, \overline{x}, \overline{p}, \overline{p}, u) , \operatorname{dim} = 2n \end{cases}$$

$$[x_{j+1}] = [x_{j+1}] + \sum_{i=1}^{k-1} h_j^i \mathcal{F}^{[i]}([x_j]) + h_j^k \mathcal{F}^{[k]}([\tilde{x}_j])$$

Step 1: set-membership Formulation of the desired specifications Step 2: Compute an outer-approximation of the reachable set of the closed-loop Step 3: Set membership inclusion tests

Outline

1 Motivation

Problem formulation

Interval Control Verification Technique

- Step 1: set-membership Formulation of the desired specifications
- Step 2: Compute an outer-approximation of the reachable set of the closed-loop
- Step 3: Set membership inclusion tests

4) Case study: Wind turbine

- Simulation example
- Experimental Example

Principle of the technique

Step 1: set-membership Formulation of the desired specifications Step 2: Compute an outer-approximation of the reachable set of the closed-loop Step 3: Set membership inclusion tests

The three main steps of the technique are:

- **§** Step 1 : Rewrite the desired control specifications as set- membership criteria
- Step 2 : Compute an outer-approximation of the reachable set of the closed-loop system.
- Step 3 : Set-membership tests are used to verify either the desired specifications are satisfied by all the possible behaviors of the closed-loop system.

Principle of the technique

Step 1: set-membership Formulation of the desired specifications Step 2: Compute an outer-approximation of the reachable set of the closed-loop Step 3: Set membership inclusion tests

The three main steps of the technique are:

- **9** Step 1 : Rewrite the desired control specifications as set- membership criteria
- Step 2 : Compute an outer-approximation of the reachable set of the closed-loop system.
- Step 3 : Set-membership tests are used to verify either the desired specifications are satisfied by all the possible behaviors of the closed-loop system.

Principle of the technique

Step 1: set-membership Formulation of the desired specifications Step 2: Compute an outer-approximation of the reachable set of the closed-loop Step 3: Set membership inclusion tests

The three main steps of the technique are:

- **9** Step 1 : Rewrite the desired control specifications as set- membership criteria
- Step 2 : Compute an outer-approximation of the reachable set of the closed-loop system.
- **3** Step 3 : Set-membership tests are used to verify either the desired specifications are satisfied by all the possible behaviors of the closed-loop system.

Step 1: set-membership Formulation of the desired specifications Step 2: Compute an outer-approximation of the reachable set of the closed-loop Step 3: Ster membership inclusion tests

Step 1: set-membership Formulation of the desired specifications

First specification

• Target set T_s : the desired behavior of the system at the steady state can be characterized by a set of state vector called target set. The ultimate bound of the closed-loop system must be enclosed in the target set

Step 1: set-membership Formulation of the desired specifications Step 2: Compute an outer-approximation of the reachable set of the closed-loop Step 3: Set membership inclusion tests

Step 1: set-membership Formulation of the desired specifications

Second specification

• Reaching time t_r : in this context, the rapidity of the system is measured by its reaching-time t_r , which is equivalent to the classical settling time. More formally, t_r is the time instant for which:

$$[\mathcal{R}_x](t_r, \mathcal{P}, \mathcal{X}_0, t_0) \subset \mathcal{T}_s$$

and $\forall t \geq t_r$ we get:

Step 1: set-membership Formulation of the desired specifications Step 2: Compute an outer-approximation of the reachable set of the closed-loop Step 3: Ster membership inclusion tests

Step 1: set-membership Formulation of the desired specifications

Third specification

• Safety set U_x : denoted by U_x , the safety set can be characterized by the state constraints and/or by authorized overshoot of the system outputs, . . . So, the nominal controller must ensures the following inclusion:

Step 1: set-membership Formulation of the desired specifications Step 2: Compute an outer-approximation of the reachable set of the closed-loop Step 3: Ster membership inclusion tests

Step 1: set-membership Formulation of the desired specifications

Fourth specification

• Feasible set U_u : denoted by U_u , in practice, actuators can not generated a control vector with arbitrary values in \mathbb{R}^m . So, the set can be defined by the input constraints and the nominal controller must satisfy:

Step 1: set-membership Formulation of the desired specifications Step 2: Compute an outer-approximation of the reachable set of the closed-loop Step 3: Set membership inclusion tests

Step 2: Compute an outer-approximation of the reachable set of the closed-loop

We compute an over-approximation of the reachable set of the closed-loop system that contains all possible solution $\mathbf{x}(t)$ generated from the set of initial conditions \mathcal{X}_0 and for all possible parameter vector $\mathbf{p} \in \mathcal{P}$.

Transitional regime $[\mathcal{R}_x]([t_0, t_r], \mathcal{P}, \mathcal{X}_0, t_0) \quad t \in [t_0, t_r]$ At reaching time $[\mathcal{R}_x](tr, \mathcal{P}, \mathcal{X}_0, t_0) \quad t = t_r$ Steady regime

 $\left[\mathcal{R}_{\mathsf{X}}
ight]\left(\left[t_{r},t_{f}
ight],\mathcal{P},\mathcal{X}_{0},t_{f}
ight) \quad t\in\left[t_{r},t_{f}
ight]$

Step 1: set-membership Formulation of the desired specifications Step 2: Compute an outer-approximation of the reachable set of the closed-loop Step 3: Set membership inclusion tests

Step 2: Compute an outer-approximation of the reachable set of the closed-loop

We compute an over-approximation of the reachable set of the closed-loop system that contains all possible solution $\mathbf{x}(t)$ generated from the set of initial conditions \mathcal{X}_0 and for all possible parameter vector $\mathbf{p} \in \mathcal{P}$.

Transitional regime	$\left[\mathcal{R}_{x} ight]\left([t_{0},t_{r}],\mathcal{P},\mathcal{X}_{0},t_{0} ight)$	$t \in [t_0, t_r]$
At reaching time		
Steady regime		

Step 1: set-membership Formulation of the desired specifications Step 2: Compute an outer-approximation of the reachable set of the closed-loop Step 3: Set membership inclusion tests

Step 2: Compute an outer-approximation of the reachable set of the closed-loop

We compute an over-approximation of the reachable set of the closed-loop system that contains all possible solution $\mathbf{x}(t)$ generated from the set of initial conditions \mathcal{X}_0 and for all possible parameter vector $\mathbf{p} \in \mathcal{P}$.

Transitional regime	$[\mathcal{R}_{x}]([t_{0},t_{r}],\mathcal{P},\mathcal{X}_{0},t_{0})$	$t \in [t_0, t_r]$
At reaching time	$\left[\mathcal{R}_{x} ight]\left(tr,\mathcal{P},\mathcal{X}_{0},t_{0} ight)$	$t = t_r$
Steady regime		

Step 1: set-membership Formulation of the desired specifications Step 2: Compute an outer-approximation of the reachable set of the closed-loop Step 3: Set membership inclusion tests

Step 2: Compute an outer-approximation of the reachable set of the closed-loop

We compute an over-approximation of the reachable set of the closed-loop system that contains all possible solution $\mathbf{x}(t)$ generated from the set of initial conditions \mathcal{X}_0 and for all possible parameter vector $\mathbf{p} \in \mathcal{P}$.

Transitional regime	$\left[\mathcal{R}_{x} ight]\left(\left[t_{0},t_{r} ight],\mathcal{P},\mathcal{X}_{0},t_{0} ight)$	$t \in [t_0, t_r]$
At reaching time	$[\mathcal{R}_x](tr,\mathcal{P},\mathcal{X}_0,t_0)$	$t = t_r$
Steady regime	$[\mathcal{R}_{x}]([t_r, t_f], \mathcal{P}, \mathcal{X}_0, t_f)$	$t \in [t_r, t_f]$

Step 1: set-membership Formulation of the desired specifications Step 2: Compute an outer-approximation of the reachable set of the closed-loop Step 3: Set membership inclusion tests

Outline

Motivation

Problem formulation

Interval Control Verification Technique

- Step 1: set-membership Formulation of the desired specifications
- Step 2: Compute an outer-approximation of the reachable set of the closed-loop
- Step 3: Set membership inclusion tests

Case study: Wind turbine

- Simulation example
- Experimental Example

Step 1: set-membership Formulation of the desired specifications Step 2: Compute an outer-approximation of the reachable set of the closed-loop Step 3: Set membership inclusion tests

Step 3: Set membership inclusion tests

In this context, a nominal controller is said **efficient** if all set-membership inclusion tests are true:

• $[\mathcal{R}_x]([t_r, \mathcal{P}, \mathcal{X}_0, t_0) \subset \mathcal{T}_s)$

(The ultimate bound of the closed-loop system is enclosed in the target set).

• $[\mathcal{R}_x]([t_r,t],\mathcal{P},\mathcal{X}_0,t_r)\subset\mathcal{T}_s$

(The target set is achieved at the reaching time).

• $[\mathcal{R}_x]([t_0, t_r], \mathcal{P}, \mathcal{X}_0, t_r) \subset \mathcal{U}_x$

(safety set: state constraints are non violated).

• $k(x, x_{ref}) \in U_u$

Step 1: set-membership Formulation of the desired specifications Step 2: Compute an outer-approximation of the reachable set of the closed-loop Step 3: Set membership inclusion tests

Step 3: Set membership inclusion tests

In this context, a nominal controller is said **efficient** if all set-membership inclusion tests are true:

• $[\mathcal{R}_x]([t_r, \mathcal{P}, \mathcal{X}_0, t_0) \subset \mathcal{T}_s$

(The ultimate bound of the closed-loop system is enclosed in the target set).

• $[\mathcal{R}_x]([t_r,t],\mathcal{P},\mathcal{X}_0,t_r)\subset\mathcal{T}_s$

(The target set is achieved at the reaching time).

• $[\mathcal{R}_x]([t_0, t_r], \mathcal{P}, \mathcal{X}_0, t_r) \subset \mathcal{U}_x$

(safety set: state constraints are non violated).

• $\mathbf{k}(\mathbf{x}, \mathbf{x}_{ref}) \in \mathcal{U}_u$

Step 1: set-membership Formulation of the desired specifications Step 2: Compute an outer-approximation of the reachable set of the closed-loop Step 3: Set membership inclusion tests

Step 3: Set membership inclusion tests

In this context, a nominal controller is said **efficient** if all set-membership inclusion tests are true:

• $[\mathcal{R}_x]([t_r, \mathcal{P}, \mathcal{X}_0, t_0) \subset \mathcal{T}_s$

(The ultimate bound of the closed-loop system is enclosed in the target set).

• $[\mathcal{R}_x]([t_r,t],\mathcal{P},\mathcal{X}_0,t_r) \subset \mathcal{T}_s$

(The target set is achieved at the reaching time).

• $[\mathcal{R}_x]([t_0, t_r], \mathcal{P}, \mathcal{X}_0, t_r) \subset \mathcal{U}_x$

(safety set: state constraints are non violated).

```
• \mathbf{k}(\mathbf{x}, \mathbf{x}_{ref}) \in \mathcal{U}_u
```

Step 1: set-membership Formulation of the desired specifications Step 2: Compute an outer-approximation of the reachable set of the closed-loop Step 3: Set membership inclusion tests

Step 3: Set membership inclusion tests

In this context, a nominal controller is said **efficient** if all set-membership inclusion tests are true:

• $[\mathcal{R}_x]([t_r, \mathcal{P}, \mathcal{X}_0, t_0) \subset \mathcal{T}_s$

(The ultimate bound of the closed-loop system is enclosed in the target set).

• $[\mathcal{R}_x]([t_r,t],\mathcal{P},\mathcal{X}_0,t_r) \subset \mathcal{T}_s$

(The target set is achieved at the reaching time).

• $[\mathcal{R}_x]([t_0, t_r], \mathcal{P}, \mathcal{X}_0, t_r) \subset \mathcal{U}_x$

(safety set: state constraints are non violated).

```
\mathbf{k}(\mathbf{x}, \mathbf{x_{ref}}) \in \mathcal{U}_u
(Feasible set : all input constraints are respected)
```

Step 1: set-membership Formulation of the desired specifications Step 2: Compute an outer-approximation of the reachable set of the closed-loop Step 3: Set membership inclusion tests

Step 3: Set membership inclusion tests

In this context, a nominal controller is said **efficient** if all set-membership inclusion tests are true:

• $[\mathcal{R}_x]([t_r, \mathcal{P}, \mathcal{X}_0, t_0) \subset \mathcal{T}_s$

(The ultimate bound of the closed-loop system is enclosed in the target set).

• $[\mathcal{R}_x]([t_r,t],\mathcal{P},\mathcal{X}_0,t_r) \subset \mathcal{T}_s$

(The target set is achieved at the reaching time).

• $[\mathcal{R}_x]([t_0, t_r], \mathcal{P}, \mathcal{X}_0, t_r) \subset \mathcal{U}_x$

(safety set: state constraints are non violated).

• $\mathbf{k}(\mathbf{x}, \mathbf{x}_{ref}) \in \mathcal{U}_u$

Simulation example Experimental Example

Outline

1 Motivation

Problem formulation

Interval Control Verification Technique

- Step 1: set-membership Formulation of the desired specifications
- Step 2: Compute an outer-approximation of the reachable set of the closed-loop
- Step 3: Set membership inclusion tests

Case study: Wind turbine

- Simulation example
- Experimental Example

Simulation example Experimental Example

Outline

Motivation

Problem formulation

Interval Control Verification Technique

- Step 1: set-membership Formulation of the desired specifications
- Step 2: Compute an outer-approximation of the reachable set of the closed-loop
- Step 3: Set membership inclusion tests

Case study: Wind turbine

- Simulation example
- Experimental Example

Simulation example Experimental Example

Simulation example

Let's consider the Electric Wind Power Generation (EWPG) system defined by the following complete model:

$$\begin{cases} \dot{\mathbf{v}} = -\alpha_{\mathbf{v}}(\mathbf{v} - \nu_0) + \eta\\ \dot{\omega} = \frac{1}{2J_{eq}}\rho N_x \pi r^2 C_p \frac{\mathbf{v}^3}{\mathbf{w}} - \frac{B_e}{J_e} \mathbf{w} - \frac{K_e i_f}{J_{eq}} i_a\\ i_f = \frac{U_f}{L_f} - \frac{R_f}{L_f} i_f\\ i_a = \frac{K_e i_f}{L_a} \mathbf{w} - \frac{R_a}{L_a} i_a - \frac{U_a}{L_a} \end{cases}$$

 $[v, w, i_f, i_a]$ is the state vector, $u = [U_f, U_a]^T$ is the input, the measurements are uncertain

$$\begin{array}{ll} \mathsf{v} \in \mathsf{v}_m + \left[-\epsilon_{\mathsf{v}}, +\epsilon_{\mathsf{v}}\right] & \epsilon_{\mathsf{v}} = 0.1 \\ \mathsf{w} \in \mathsf{w}_m + \left[-\epsilon_{\mathsf{w}}, +\epsilon_{\mathsf{w}}\right] & \epsilon_{\mathsf{w}} = 0.1 \\ i_f \in i_{f_m} + \left[-\epsilon_{i_f}, +\epsilon_{i_f}\right] & \epsilon_{i_f} = 0.1 \\ i_g \in i_{g_m} + \left[-\epsilon_{i_g}, +\epsilon_{i_g}\right] & \epsilon_{i_g} = 0.1 \\ \texttt{Uncertain parameters} : \rho \in [1.1875, 1.3125] , B_e \in [0.0142, 0.0158] \end{array}$$

Simulation example Experimental Example

Simulation example

Parameters	Value
Turbine Radio, R	$4.0 \ m$
Turbine inertia, J_T	$1.5 \ kgm^2$
Wind speed range	$2 - 12 m s^{-1}$
Transmission ratio, N_x	7.5
Wind density, ρ	$1.25 \ kgm^{-3}$
DC generator inertia, J_e	$0.3 \ kgm^2$
Maximum DC generator output power, Pgen	$6.0 \ kW$
Rated field voltage, V_f	120 V
Rated armature voltage, V_a	240 V
Rated field flow, ϕ_f	0.12 Wb
Rated field current flow, I_F	2 A
Field inductance, L_f	60 mH
Field resistance, R_f	60Ω
Armature inductance, L_a	10 mH
Armature resistance, R_a	2.0Ω
Friction constant, B_e	0.015
Induced EFM constant, K_e	0.5
Wind speed time constant, α_v	0.2

Figure: Table of numerical values

Simulation example Experimental Example

Simulation example

The objective is to maximize the power generated by the wind turbine by ensuring the following performance criterion

$$Z = (\lambda_{opt}v - rw) = 0$$

based on the linearized model around the operating point $(v_0, w_0, i_{f0}, i_{g0}) = (5.3 m/s, 82.48 rad/s, 2A, 185.8A)$, $u_0 = (120V, 289.28V)$, an LQR controller $u = -k(x - x_0) + u_0$ is designed.

The objective of the controller is to minimize the criterion Z and make it close to 0. The LQR controller is obtained with the following weighting matrices :

$$Q = \begin{pmatrix} \lambda_{opt}^2 & -r\lambda_{opt} \\ -r\lambda_{opt} & r^2 \end{pmatrix} \quad R = 10^5$$

	Desired specification
Target set	$Z \in [-0.3, 0.3]$
Reaching time	$t_r \leq 8s$
Safety set	$(v, w, i_f, i_g) \in ([1, 15], [60, 160], [0, 7], [0, 215])$
Feasible set	$(Uf, Ua) \in ([0, 121], [0, 291])$

Simulation example Experimental Example

Simulation example

The objective is to maximize the power generated by the wind turbine by ensuring the following performance criterion

$$Z = (\lambda_{opt}v - rw) = 0$$

based on the linearized model around the operating point $(v_0, w_0, i_{f0}, i_{g0}) = (5.3m/s, 82.48rad/s, 2A, 185.8A)$, $u_0 = (120V, 289.28V)$, an LQR controller $u = -k(x - x_0) + u_0$ is designed.

The objective of the controller is to minimize the criterion Z and make it close to 0. The LQR controller is obtained with the following weighting matrices :

$$Q = \begin{pmatrix} \lambda_{opt}^2 & -r\lambda_{opt} \\ -r\lambda_{opt} & r^2 \end{pmatrix} \quad R = 10^5$$

	Desired specification
Target set	$Z \in [-0.3, 0.3]$
Reaching time	$t_r \leq 8s$
Safety set	$(v, w, i_f, i_g) \in ([1, 15], [60, 160], [0, 7], [0, 215])$
Feasible set	$(Uf, Ua) \in ([0, 121], [0, 291])$

Simulation example Experimental Example

Simulation example

The objective is to maximize the power generated by the wind turbine by ensuring the following performance criterion

$$Z = (\lambda_{opt}v - rw) = 0$$

based on the linearized model around the operating point $(v_0, w_0, i_{f0}, i_{g0}) = (5.3m/s, 82.48rad/s, 2A, 185.8A)$, $u_0 = (120V, 289.28V)$, an LQR controller $u = -k(x - x_0) + u_0$ is designed.

The objective of the controller is to minimize the criterion Z and make it close to 0. The LQR controller is obtained with the following weighting matrices :

$$Q = \begin{pmatrix} \lambda_{opt}^2 & -r\lambda_{opt} \\ -r\lambda_{opt} & r^2 \end{pmatrix} \quad R = 10^5$$

	Desired specification
Target set	$Z \in [-0.3, 0.3]$
Reaching time	$t_r \leq 8s$
Safety set	$(v, w, i_f, i_g) \in ([1, 15], [60, 160], [0, 7], [0, 215])$
Feasible set	$(Uf, Ua) \in ([0, 121], [0, 291])$

Simulation example Experimental Example

Simulation example

The objective is to maximize the power generated by the wind turbine by ensuring the following performance criterion

$$Z = (\lambda_{opt} v - rw) = 0$$

based on the linearized model around the operating point $(v_0, w_0, i_{f0}, i_{g0}) = (5.3m/s, 82.48rad/s, 2A, 185.8A)$, $u_0 = (120V, 289.28V)$, an LQR controller $u = -k(x - x_0) + u_0$ is designed.

The objective of the controller is to minimize the criterion Z and make it close to 0. The LQR controller is obtained with the following weighting matrices :

$$Q = \begin{pmatrix} \lambda_{opt}^2 & -r\lambda_{opt} \\ -r\lambda_{opt} & r^2 \end{pmatrix} \quad R = 10^5$$

	Desired specification
Target set	$Z \in [-0.3, 0.3]$
Reaching time	$t_r \leq 8s$
Safety set	$(v, w, i_f, i_g) \in ([1, 15], [60, 160], [0, 7], [0, 215])$
Feasible set	$(Uf, Ua) \in ([0, 121], [0, 291])$

Table: Table of desired specifications

Simulation example Experimental Example

Simulation example

Compute an outer-approximation of the reachable set of the closed-loop system (upper and lower bounding systems).

$$\begin{cases} \dot{\overline{v}} = -\alpha_v(\overline{v} - v_0) + \overline{\eta} \\ \dot{\overline{w}} = \frac{1}{2l_{eq}}\overline{\rho}N_x\pi r^2 C_p \frac{\overline{w}}{\overline{w}} - \frac{B_e}{l_e}\overline{w} - \frac{K_e l_f}{l_{eq}} \underline{i}_a \\ \vec{i}_f = \frac{1}{L_f}(K_1(\overline{v} + \overline{e}_v - v_0) + K_2(\overline{w} + \overline{e}_w - w_0) + K_3(\overline{i}_f + \underline{e}_{if}) + K_4(\underline{i}_a + \overline{e}_{ia}) - u_{f_0}) - \frac{R_f}{L_f}\overline{i}_f \\ \vec{i}_a = \frac{K_e l_f}{L_a}\overline{w} - \frac{R_a}{L_a}\overline{i}_a - \frac{1}{L_a}(K_1(\underline{v} + \underline{e}_v - v_0) + K_2(\underline{w} + \underline{e}_w - w_0) + K_3(\overline{i}_f + \overline{e}_{if}) + K_4(\overline{i}_a + \overline{e}_{ia}) - u_{g_0}) \\ \underline{\psi} = -\alpha_v(\underline{v} - v_0) + \eta \\ \underline{\psi} = \frac{1}{2l_{eq}}\underline{\rho}N_x\pi r^2 C_p \frac{v^3}{\overline{w}} - \frac{B_e}{l_e}\underline{w} - \frac{K_e l_f}{l_{eq}}\overline{i}_a \\ \underline{i}_f = -\frac{1}{L_f}(K_1(\underline{v} + \underline{e}_v - v_0) + K_2(\underline{w} + \underline{e}_w - w_0) + K_3(\underline{i}_f + \overline{e}_{if}) + K_4(\overline{i}_a + \overline{e}_{ia}) - u_{f_0}) - \frac{R_f}{L_f}\underline{i}_f \\ \underline{i}_a = \frac{K_e l_f}{L_a}\underline{w} - \frac{R_e}{L_a}\underline{i}_a - \frac{1}{L_a}(K_1(\overline{v} + \overline{e}_v - v_0) + K_2(\overline{w} + \overline{e}_w - w_0) + K_3(\underline{i}_f + \underline{e}_{if}) + K_4(\underline{i}_a + \underline{e}_{ia}) - u_{g_0}) \end{cases}$$

Simulation example Experimental Example

Simulation example Experimental Example

Simulation example Experimental Example

Simulation example Experimental Example

Case with big uncertainty of sensors: We will take a case of sensors that gives erroneous measurement, in this case with our technique, we can not conclude about the efficiency of the controller.

Simulation example Experimental Example

Outline

Motivation

Problem formulation

Interval Control Verification Technique

- Step 1: set-membership Formulation of the desired specifications
- Step 2: Compute an outer-approximation of the reachable set of the closed-loop
- Step 3: Set membership inclusion tests

Case study: Wind turbine

- Simulation example
- Experimental Example

Simulation example Experimental Example

Test bench

Simulation example Experimental Example

Experimental model

The experimental wind turbine system is defined by the model:

$$\begin{cases} \dot{v} = -\alpha_v(v - v_0) + \eta\\ \dot{w} = \frac{1}{2J_e}\rho\pi r^2 \frac{v^3}{w} - \frac{[B_e]}{J_e}w - \frac{K_{eq}}{J_e}i_g \end{cases}$$

[v,w] is the state vector, $u=i_g$ is the input, the measurements are uncertain $v\in v_m+[-\epsilon_v,+\epsilon_v]$ $\epsilon_v=0.1$ $w\in w_m+[-\epsilon_w,+\epsilon_w]$ $\epsilon_w=0.1$ Uncertain parameters : $\rho\in[1.1875,1.3125]$, $B_e\in[0.99,1.21]\times10^{-5}$

As before the LQR controller is designed by taking the linearized model around the operating point $x_0 = (2.1m/s, 156rad/s), u_0 = 9.36 \times 10^{-4}$.

	Desired specifications
Target set	$Z \in [-0.3, 0.3]$
Reaching time	$t_r \leq 3s$
Safety set	$(v, w) \in ([1, 3], [50, 190])$
Feasible set	

Simulation example Experimental Example

Experimental model

The experimental wind turbine system is defined by the model:

$$\begin{cases} \dot{\mathbf{v}} = -\alpha_{\mathbf{v}}(\mathbf{v} - \mathbf{v}_0) + \eta\\ \dot{\mathbf{w}} = \frac{1}{2J_e}\rho\pi r^2 \frac{\mathbf{v}^3}{\mathbf{w}} - \frac{[B_e]}{J_e}\mathbf{w} - \frac{K_{eq}}{J_e}\mathbf{i}g \end{cases}$$

[v,w] is the state vector, $u=i_g$ is the input, the measurements are uncertain $v\in v_m+[-\epsilon_v,+\epsilon_v]$ $\epsilon_v=0.1$ $w\in w_m+[-\epsilon_w,+\epsilon_w]$ $\epsilon_w=0.1$ Uncertain parameters : $\rho\in[1.1875,1.3125]$, $B_e\in[0.99,1.21]\times10^{-5}$

As before the LQR controller is designed by taking the linearized model around the operating point $x_0 = (2.1m/s, 156rad/s), u_0 = 9.36 \times 10^{-4}$.

	Desired specifications
Target set	$Z \in [-0.3, 0.3]$
Reaching time	$t_r \leq 3s$
Safety set	$(v, w) \in ([1, 3], [50, 190])$
Feasible set	

Simulation example Experimental Example

Experimental model

The experimental wind turbine system is defined by the model:

$$\begin{cases} \dot{\mathbf{v}} = -\alpha_{\mathbf{v}}(\mathbf{v} - \mathbf{v}_0) + \eta\\ \dot{\mathbf{w}} = \frac{1}{2J_e}\rho\pi r^2 \frac{\mathbf{v}^3}{\mathbf{w}} - \frac{[B_e]}{J_e}\mathbf{w} - \frac{K_{eq}}{J_e}\mathbf{j}_g \end{cases}$$

[v,w] is the state vector, $u=i_g$ is the input, the measurements are uncertain $v\in v_m+[-\epsilon_v,+\epsilon_v]$ $\epsilon_v=0.1$ $w\in w_m+[-\epsilon_w,+\epsilon_w]$ $\epsilon_w=0.1$ Uncertain parameters : $\rho\in[1.1875,1.3125]$, $B_e\in[0.99,1.21]\times10^{-5}$

As before the LQR controller is designed by taking the linearized model around the operating point $x_0 = (2.1m/s, 156rad/s), u_0 = 9.36 \times 10^{-4}$.

	Desired specifications
Target set	$Z\in [-0.3, 0.3]$
Reaching time	$t_r \leq 3s$
Safety set	$(v, w) \in ([1, 3], [50, 190])$
Feasible set	

Simulation example Experimental Example

Experimental model

The experimental wind turbine system is defined by the model:

$$\begin{cases} \dot{\mathbf{v}} = -\alpha_{\mathbf{v}}(\mathbf{v} - \mathbf{v}_0) + \eta\\ \dot{\mathbf{w}} = \frac{1}{2J_e}\rho\pi r^2 \frac{\mathbf{v}^3}{\mathbf{w}} - \frac{[B_e]}{J_e}\mathbf{w} - \frac{K_{eq}}{J_e}\mathbf{i}g \end{cases}$$

[v,w] is the state vector, $u=i_g$ is the input, the measurements are uncertain $v\in v_m+[-\epsilon_v,+\epsilon_v]$ $\epsilon_v=0.1$ $w\in w_m+[-\epsilon_w,+\epsilon_w]$ $\epsilon_w=0.1$ Uncertain parameters : $\rho\in[1.1875,1.3125]$, $B_e\in[0.99,1.21]\times10^{-5}$

As before the LQR controller is designed by taking the linearized model around the operating point $x_0 = (2.1m/s, 156rad/s), u_0 = 9.36 \times 10^{-4}$.

	Desired specifications
Target set	$Z \in [-0.3, 0.3]$
Reaching time	$t_r \leq 3s$
Safety set	$(v, w) \in ([1, 3], [50, 190])$
Feasible set	$i_g \in [0, 0.02]$

Table: Table of desired specifications

Simulation example Experimental Example

Experimental example

Compute an outer-approximation of the reachable set of the closed-loop system.

$$\begin{cases} \left\{ \begin{array}{l} \dot{\overline{v}} = -\alpha_{v}(\overline{v} - \nu_{0}) + \overline{\eta} \\ \dot{\overline{\omega}} = \frac{1}{2J_{e}}\overline{\rho}\pi r^{2}C_{\rho}\frac{\overline{v}^{3}}{\overline{w}} - \frac{B_{e}}{J_{e}}\overline{w} - \frac{K_{e}}{J_{eq}}(K_{1}(\overline{v} + \overline{\epsilon}_{v} - v_{0}) + K_{2}(\overline{w} + \overline{\epsilon}_{w} - w_{0}) - u_{0}) \\ \left\{ \begin{array}{l} \dot{\underline{v}} = -\alpha_{v}(\underline{v} - v_{0}) + \eta \\ \dot{\underline{\omega}} = \frac{1}{2J_{eq}}\rho\pi r^{2}C_{\rho}\frac{\overline{w}^{3}}{w} - \frac{B_{e}}{J_{e}}\underline{w} - \frac{K_{e}}{J_{eq}}(K_{1}(\underline{v} + \underline{\epsilon}_{v} - v_{0}) + K_{2}(\overline{w} + \underline{\epsilon}_{w} - w_{0}) - u_{0}) \end{cases} \end{cases} \end{cases} \end{cases} \right\}$$

Simulation example Experimental Example

Simulation example Experimental Example

Experimental results

Outline

Motivation

Problem formulation

Interval Control Verification Technique

- Step 1: set-membership Formulation of the desired specifications
- Step 2: Compute an outer-approximation of the reachable set of the closed-loop
- Step 3: Set membership inclusion tests

4 Case study: Wind turbine

- Simulation example
- Experimental Example

- **Conclusion:** we proposed an interval technique based on reachability analysis to evaluate a priori the performance of nominal controller applied to real systems. To do that, a list of set-membership inclusion tests were used to verify the desired specifications.
- **Perspectives:** Use the reachability analysis to synthesize directly robust controllers. a technique based on set inversion via interval analysis techniques coupled with reachability analysis methods will be developed.

- **Conclusion:** we proposed an interval technique based on reachability analysis to evaluate a priori the performance of nominal controller applied to real systems. To do that, a list of set-membership inclusion tests were used to verify the desired specifications.
- **Perspectives:** Use the reachability analysis to synthesize directly robust controllers. a technique based on set inversion via interval analysis techniques coupled with reachability analysis methods will be developed.

THANK YOU FOR YOUR ATTENTION