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Errors and Proofs

Mathematicians and Computer Scientists want to eliminate all
the uncertainties on their results. Why?

M. Lecat, Erreurs des Mathématiciens des origines à nos
jours, 1935. ; 130 pages of errors! (Euler, Fermat, . . . )

Ariane 5 launch failure, Pentium FDIV bug

U.S. Patriot missile killed 28
soldiers from the U.S. Army’s

Internal clock: 0.1 sec intervals

Roundoff error on the binary
constant “0.1”
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Errors and Proofs

GUARANTEED OPTIMIZATION

Input : Linear problem (LP), geometric, semidefinite (SDP)

Output : solution + certificate numeric-symbolic ; formal

VERIFICATION OF CRITICAL SYSTEMS

Reliable software/hardware embedded codes
Aerospace control
molecular biology, robotics, code synthesis, . . .

Efficient Verification of Nonlinear Systems

Automated precision tuning of systems/programs
analysis/synthesis

Efficiency sparsity correlation patterns

Certified approximation algorithms
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Roundoff Error Bounds

Real : f (x) := x1 × x2 + x3

Floating-point : f̂ (x, e) := [x1x2(1 + e1) + x3](1 + e2)

Input variable constraints x ∈ X
Finite precision ; bounds over e ∈ E: | ei |6 2−53 (double)
Guarantees on absolute round-off error | f̂ − f | ?

↓ Upper Bounds ↓
max f̂ − f max f̂ − f

↑ Lower Bounds ↑
↓ Lower Bounds ↓

min f̂ − f min f̂ − f
↑ Upper Bounds ↑
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Nonlinear Programs

Polynomials programs : +,−,×

x2x5 + x3x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6)

Semialgebraic programs: | · |,√, /, sup, inf

4x

1 +
x

1.11

Transcendental programs: arctan, exp, log, . . .

log(1 + exp(x))
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Existing Frameworks

Classical methods:

Abstract domains [Goubault-Putot 11]

FLUCTUAT: intervals, octagons, zonotopes

Interval arithmetic [Daumas-Melquiond 10]

GAPPA: interface with COQ proof assistant
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Existing Frameworks

Recent progress:

Affine arithmetic + SMT [Darulova 14]

rosa: sound compiler for reals (SCALA)

Symbolic Taylor expansions [Solovyev 15]

FPTaylor: certified optimization (OCAML/HOL-LIGHT)

Guided random testing s3fp [Chiang 14]
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Contributions

Maximal Roundoff error of the program implementation of f :

r? := max |f̂ (x, e)− f (x)|
Decomposition: linear term l w.r.t. e + nonlinear term h

max |l(x, e)|+ max |h(x, e)| > r? > max |l(x, e)| −max |h(x, e)|

Coarse bound of h with interval arithmetic
Semidefinite programming (SDP) bounds for l:

↓ Upper Bounds ↓

↑ Upper Bounds ↑

↑ Lower Bounds ↑
↓ Lower Bounds ↓

Sparse SDP relaxations Robust SDP relaxations
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Contributions

1 General SDP framework for upper and lower bounds

2 Comparison with SMT and linear/affine/Taylor
arithmetic:
; Efficient optimization +© Tight upper bounds

3 Extensions to transcendental/conditional programs

4 Formal verification of SDP bounds

5 Open source tool Real2Float (in OCAML and COQ)
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Introduction

Semidefinite Programming for Polynomial Optimization

Upper Bounds with Sparse SDP

Lower Bounds with Robust SDP

Conclusion



What is Semidefinite Programming?

Linear Programming (LP):

min
z

c
>

z

s.t. A z > d .

Linear cost c

Linear inequalities “∑i Aij zj > di” Polyhedron
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What is Semidefinite Programming?

Semidefinite Programming (SDP):

min
z

c
>

z

s.t. ∑
i

Fi zi < F0 .

Linear cost c

Symmetric matrices F0, Fi

Linear matrix inequalities “F < 0”
(F has nonnegative eigenvalues)

Spectrahedron
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Applications of SDP

Combinatorial optimization

Control theory

Matrix completion

Unique Games Conjecture (Khot ’02) :
“A single concrete algorithm provides optimal guarantees
among all efficient algorithms for a large class of
computational problems.”
(Barak and Steurer survey at ICM’14)

Solving polynomial optimization (Lasserre ’01)
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SDP for Polynomial Optimization

Prove polynomial inequalities with SDP:

f (a, b) := a2 − 2ab + b2 > 0 .

Find z s.t. f (a, b) =
(

a b
)(z1 z2

z2 z3

)
︸ ︷︷ ︸

<0

(
a
b

)
.

Find z s.t. a2 − 2ab + b2 = z1a2 + 2z2ab + z3b2 (A z = d)

(
z1 z2
z2 z3

)
=

(
1 0
0 0

)
︸ ︷︷ ︸

F1

z1 +

(
0 1
1 0

)
︸ ︷︷ ︸

F2

z2 +

(
0 0
0 1

)
︸ ︷︷ ︸

F3

z3 <
(

0 0
0 0

)
︸ ︷︷ ︸

F0
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SDP for Polynomial Optimization

Choose a cost c e.g. (1, 0, 1) and solve:

min
z

c
>

z

s.t. ∑
i

Fi zi < F0 , A z = d .

Solution
(

z1 z2
z2 z3

)
=

(
1 −1
−1 1

)
< 0 (eigenvalues 0 and 2)

a2 − 2ab + b2 =
(
a b

) ( 1 −1
−1 1

)
︸ ︷︷ ︸

<0

(
a
b

)
= (a− b)2 .

Solving SDP =⇒ Finding SUMS OF SQUARES certificates
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SDP for Polynomial Optimization

General case:

Semialgebraic set X := {x ∈ Rn : g1(x) > 0, . . . , gm(x) > 0}

p∗ := min
x∈X

f (x): NP hard

Sums of squares (SOS) Σ[x] (e.g. (x1 − x2)
2)

Q(X) :=
{

σ0(x) + ∑m
j=1 σj(x)gj(x), with σj ∈ Σ[x]

}
Fix the degree 2k of products:

Qk(X) :=
{

σ0(x) +
m

∑
j=1

σj(x)gj(x), with deg σj gj 6 2k
}
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SDP for Polynomial Optimization

Hierarchy of SDP relaxations:

λk := sup
λ

{
λ : f − λ ∈ Qk(X)

}
Convergence guarantees λk ↑ f ∗ [Lasserre 01]

Can be computed with SDP solvers (CSDP, SDPA)

“No Free Lunch” Rule: (n+2k
n ) SDP variables

Extension to semialgebraic functions r(x) = p(x)/
√

q(x)
[Lasserre-Putinar 10]
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Sparse SDP Optimization [Waki, Lasserre 06]

Correlative sparsity pattern (csp) of variables

x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6)

6

4

5

1

2

3

1 Maximal cliques C1, . . . , Cl

2 Average size κ ; (κ+2k
κ )

variables

C1 := {1, 4}
C2 := {1, 2, 3, 5}
C3 := {1, 3, 5, 6}
Dense SDP: 210 variables
Sparse SDP: 115 variables
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Introduction

Semidefinite Programming for Polynomial Optimization

Upper Bounds with Sparse SDP

Lower Bounds with Robust SDP

Conclusion



Polynomial Programs
↓ Upper Bounds ↓

↑ Upper Bounds ↑

Input: exact f (x), floating-point f̂ (x, e), x ∈ X, | ei |6 2−53

Output: Bound for f − f̂
1: Error r(x, e) := f (x)− f̂ (x, e) = ∑

α

rα(e)xα

2: Decompose r(x, e) = l(x, e) + h(x, e), l linear in e

3: l(x, e) = ∑m
i=1 si(x)ei

4: Maximal cliques correspond to {x, e1}, . . . , {x, em}

5: Bound l(x, e) with sparse SDP relaxations (and h with IA)

Dense relaxation: (n+m+2k
n+m ) SDP variables

Sparse relaxation: m(n+1+2k
n+1 ) SDP variables
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Preliminary Comparisons
↓ Upper Bounds ↓

↑ Upper Bounds ↑

f (x) := x2x5 + x3x6− x2x3− x5x6 + x1(−x1 + x2 + x3− x4 + x5 + x6)

x ∈ [4.00, 6.36]6 , e ∈ [−ε, ε]15 , ε = 2−53

Dense SDP: (6+15+4
6+15 ) = 12650 variables ; Out of memory

Sparse SDP Real2Float tool: 15(6+1+4
6+1 ) = 4950 ; 759ε

Interval arithmetic: 922ε (10 × less CPU)

Symbolic Taylor FPTaylor tool: 721ε (21 ×more CPU)

SMT-based rosa tool: 762ε (19 ×more CPU)
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Preliminary Comparisons
↓ Upper Bounds ↓

↑ Upper Bounds ↑

Re
al
2F
lo
at
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FP
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yl
or

0

200
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600

800

1,000

759ε 762ε
721ε

CPU Time

Er
ro

r
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un
d

(ε
)

Victor Magron Certification of Roundoff Errors with SDP Relaxations and Formal Interval Methods 18 / 27



Extensions: Transcendental Programs
↓ Upper Bounds ↓

↑ Upper Bounds ↑

Reduce f ∗ := infx∈K f (x) to semialgebraic optimization

a

y

par+a1

par+a2

par−a2

par−a1

a2a1

arctan

m M
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Extensions: Conditionals
↓ Upper Bounds ↓

↑ Upper Bounds ↑

if (p(x) 6 0) f (x); else g(x);

DIVERGENCE PATH ERROR:

r? := max{
max

p(x)60,p(x,e)>0
| f̂ (x, e)− g(x) |

max
p(x)>0,p(x,e)60

| ĝ(x, e)− f (x) |

max
p(x)>0,p(x,e)>0

| f̂ (x, e)− f (x) |

max
p(x)60,p(x,e)60

| ĝ(x, e)− g(x) |

}
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Comparison with rosa
↓ Upper Bounds ↓

↑ Upper Bounds ↑

Relative bound precision

Relative execution time

a bc

de

f

g

h

i

jk
l

m

o

p
q

r

t

u

v w

x

y z

0 10 100−10

1

−1

0.5

−0.5
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Comparison with FPTaylor
↓ Upper Bounds ↓

↑ Upper Bounds ↑

Relative bound precision

Relative execution time

a

b
c d

e

f

g

h

i

jk l

m
n o

p qr

t

u
v

w x α

β

γδ

0 10 100−10

1

−1

0.5

−0.5
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Lower Bounds with Robust SDP

Conclusion



Method 1: geneig [Lasserre 11]
↑ Lower Bounds ↑
↓ Lower Bounds ↓

Generalized eigenvalue problem:

f ∗ := min
x∈X

f (x) 6 λk := sup
λ

λ

s.t. Mk(f y) < λMk(y).

Uniform distribution moments: yα :=
∫

X xαdx
Localizing matrices Mk(f y):

M1(f y) =


1 x1 x2

1
∫

X f (x)dx
∫

X f (x)x1dx
∫

X f (x)x2dx
x1

∫
X f (x)x1dx

∫
X f (x)x2

1dx
∫

X f (x)x1x2dx
x2

∫
X f (x)x2dx

∫
X f (x)x2x1dx

∫
X f (x)x2

2dx


Theorem [Lasserre 11]
λk ↓ f ∗
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Method 2: mvbeta [DeKlerk et al. 16]
↑ Lower Bounds ↑
↓ Lower Bounds ↓

Elementary calculation with f (x) = ∑
α

fαxα:

f ∗ := min
x∈X

f (x) 6 f H
k := min

|η+β|62k
∑
α

fα
γη+α,β

γη,β

Multivariate beta distribution moments:

γη,β :=
∫

X
xη(1− x)βdx .

Theorem [DeKlerk et al. 16]

f H
k ↓ f ∗
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Method 3: robustsdp
↑ Lower Bounds ↑
↓ Lower Bounds ↓

Robust SDP with l(x, e) =
m
∑

i=1
si(x)ei:

l∗ := min
(x,e)∈X×E

l(x, e) 6 λ′k := sup
λ

λ

s.t. ∀e ∈ E , Mk(l y) < λMk(y).

Linearity Mk(l y) =
m
∑

i=1
eiMk(si y)

Factorize Mk(si y) = Li
kRi

k, Lk := [L1
k · · ·Lm

k ], Rk := [R1
k · · ·Rm

k ]
T

Theorem following from [El Ghaoui et al. 98]

λ′k ↓ l∗ and λ′k = sup
λ,S,G

λ

s.t.
(−λMk(y)− Lk S Lk

T Rk
T + Lk G

Rk −G Lk
T S

)
< 0 ,

ST = S , GT = −G .
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Benchmark kepler0 with k = 2
↑ Lower Bounds ↑
↓ Lower Bounds ↓
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Conclusion

Sparse/Robust SDP relaxations for NONLINEAR PROGRAMS:

Polynomial and transcendental programs

Certified ; Formal roundoff error bounds
(Joint work with T. Weisser and B. Werner)

Real2Float open source tool:

http://nl-certify.forge.ocamlcore.org/real2float.html
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Conclusion

Further research:

Automatic FPGA code generation

Roundoff error analysis with while/for loops

Master / PhD Positions Available !
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End

Thank you for your attention!

http://www-verimag.imag.fr/~magron

V. Magron, G. Constantinides, A. Donaldson. Certified
Roundoff Error Bounds Using Semidefinite Programming,
arxiv.org/abs/1507.03331

http://www-verimag.imag.fr/~magron
arxiv.org/abs/1507.03331
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