Certification of Roundoff Errors with SDP Relaxations and Formal Interval Methods

Victor Magron, CNRS VERIMAG

Jointly Certified Upper Bounds with **G. Constantinides** and **A. Donaldson** Jointly Certified Lower Bounds with **M. Farid**

> SWIM ENS Lyon, 20 June 2016

M. Lecat, Erreurs des Mathématiciens des origines à nos jours, 1935. → 130 pages of errors! (Euler, Fermat, ...)

M. Lecat, Erreurs des Mathématiciens des origines à nos jours, 1935. → 130 pages of errors! (Euler, Fermat, ...)

Ariane 5 launch failure, Pentium FDIV bug

M. Lecat, Erreurs des Mathématiciens des origines à nos jours, 1935. → 130 pages of errors! (Euler, Fermat, ...)

Ariane 5 launch failure, Pentium FDIV bug

- U.S. Patriot missile killed 28 soldiers from the U.S. Army's
- Internal clock: 0.1 sec intervals
- Roundoff error on the binary constant "0.1"

Errors and Proofs

GUARANTEED OPTIMIZATION

Input : Linear problem 🌳 (LP), geometric, semidefinite À (SDP)

Output : solution + certificate \bigcirc numeric-symbolic \sim formal

Errors and Proofs

GUARANTEED OPTIMIZATION Input : Linear problem 🎔 (LP), geometric, semidefinite 🄌 (SDP) Output : solution + certificate \mathfrak{M} numeric-symbolic $\sim \mathfrak{P}$ formal VERIFICATION OF CRITICAL SYSTEMS Reliable software/hardware embedded codes

Aerospace control

molecular biology, robotics, code synthesis, ...

Errors and Proofs

GUARANTEED OPTIMIZATION Input : Linear problem (LP), geometric, semidefinite (SDP) Output : solution + certificate numeric-symbolic ~ formal VERIFICATION OF CRITICAL SYSTEMS Reliable software/hardware embedded codes

Aerospace control

molecular biology, robotics, code synthesis, ...

Efficient Verification of Nonlinear Systems

- Automated precision tuning of systems/programs analysis/synthesis
- Efficiency sparsity correlation patterns
- Certified approximation algorithms

Roundoff Error Bounds

Real : $f(\mathbf{x}) := x_1 \times x_2 + x_3$

Floating-point : $\hat{f}(\mathbf{x}, \mathbf{e}) := [x_1 x_2 (1 + e_1) + x_3](1 + e_2)$

Input variable constraints $\mathbf{x} \in \mathbf{X}$ Finite precision \sim bounds over $\mathbf{e} \in \mathbf{E}$: $|e_i| \leq 2^{-53}$ (double) **Guarantees** on absolute round-off error $|\hat{f} - f|$?

Nonlinear Programs

■ Polynomials programs : +, -, ×

$$x_2x_5 + x_3x_6 + x_1(-x_1 + x_2 + x_3 - x_4 + x_5 + x_6)$$

Nonlinear Programs

■ Polynomials programs : +, -, ×

$$x_2x_5 + x_3x_6 + x_1(-x_1 + x_2 + x_3 - x_4 + x_5 + x_6)$$

• Semialgebraic programs: $|\cdot|, \sqrt{, /, sup}$, inf

$$\frac{4x}{1 + \frac{x}{1.11}}$$

Nonlinear Programs

■ Polynomials programs : +, -, ×

$$x_2x_5 + x_3x_6 + x_1(-x_1 + x_2 + x_3 - x_4 + x_5 + x_6)$$

• Semialgebraic programs: $|\cdot|, \sqrt{, /, sup}$, inf

$$\frac{4x}{1+\frac{x}{1.11}}$$

Transcendental programs: arctan, exp, log, ...

$$\log(1 + \exp(x))$$

Classical methods:

Abstract domains [Goubault-Putot 11]

FLUCTUAT: intervals, octagons, zonotopes

Interval arithmetic [Daumas-Melquiond 10] GAPPA: interface with COQ proof assistant

6/27

Recent progress:

Affine arithmetic + SMT [Darulova 14]
 rosa: sound compiler for reals (SCALA)

Symbolic Taylor expansions [Solovyev 15]
 FPTaylor: certified optimization (OCAML/HOL-LIGHT)

Guided random testing s3fp [Chiang 14]

6/27

Contributions

Maximal Roundoff error of the program implementation of *f*: $r^* := \max |\hat{f}(\mathbf{x}, \mathbf{e}) - f(\mathbf{x})|$

Decomposition: linear term l w.r.t. e + nonlinear term h

 $\max |l(\mathbf{x}, \mathbf{e})| + \max |h(\mathbf{x}, \mathbf{e})| \ge r^* \ge \max |l(\mathbf{x}, \mathbf{e})| - \max |h(\mathbf{x}, \mathbf{e})|$

- Coarse bound of *h* with interval arithmetic
- **Semidefinite programming** (SDP) bounds for *l*:

Contributions

Maximal Roundoff error of the program implementation of *f*: $r^* := \max |\hat{f}(\mathbf{x}, \mathbf{e}) - f(\mathbf{x})|$

Decomposition: **linear** term l w.r.t. **e** + nonlinear term h

 $\max |l(\mathbf{x}, \mathbf{e})| + \max |h(\mathbf{x}, \mathbf{e})| \ge r^* \ge \max |l(\mathbf{x}, \mathbf{e})| - \max |h(\mathbf{x}, \mathbf{e})|$

- Coarse bound of *h* with interval arithmetic
- **Semidefinite programming** (SDP) bounds for *l*:

 \downarrow **Upper** Bounds \downarrow

↑ Lower Bounds ↑ \downarrow Lower Bounds ↓

↑ Upper Bounds ↑ Sparse SDP relaxations

Robust SDP relaxations

Victor Magron

Certification of Roundoff Errors with SDP Relaxations and Formal Interval Methods

- **1** General **SDP** framework for upper and lower bounds
- 2 Comparison with SMT and linear/affine/Taylor arithmetic:
 - → Efficient optimization ⊕ Tight upper bounds
- 3 Extensions to transcendental/conditional programs
- 💶 Formal verification of SDP bounds 🎐
- 5 Open source tool Real2Float (in OCAML and COQ)

Introduction

Semidefinite Programming for Polynomial Optimization

Upper Bounds with Sparse SDP

Lower Bounds with Robust SDP

Conclusion

What is Semidefinite Programming?

Linear Programming (LP):

 $\min_{\mathbf{z}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{z} \\ \text{s.t.} \quad \mathbf{A} \mathbf{z} \ge \mathbf{d} \ .$

Linear cost c

• Linear inequalities " $\sum_i A_{ij} z_j \ge d_i$ "

Polyhedron

What is Semidefinite Programming?

Semidefinite Programming (SDP):

$$\min_{\mathbf{z}} \quad \mathbf{c}^{\top} \mathbf{z} \\ \text{s.t.} \quad \sum_{i} \mathbf{F}_{i} z_{i} \succeq \mathbf{F}_{0} \ .$$

- Symmetric matrices **F**₀, **F**_{*i*}
- Linear matrix inequalities "F ≽ 0" (F has nonnegative eigenvalues)

Spectrahedron

What is Semidefinite Programming?

Semidefinite Programming (SDP):

$$\min_{\mathbf{z}} \quad \mathbf{c}^{\top} \mathbf{z} \\ \text{s.t.} \quad \sum_{i} \mathbf{F}_{i} z_{i} \succeq \mathbf{F}_{0} \quad , \quad \mathbf{A} \mathbf{z} = \mathbf{d} \quad .$$

- Symmetric matrices **F**₀, **F**_{*i*}
- Linear matrix inequalities "F ≽ 0" (F has nonnegative eigenvalues)

Spectrahedron

Applications of SDP

- Combinatorial optimization
- Control theory
- Matrix completion
- Unique Games Conjecture (Khot '02) : "A single concrete algorithm provides optimal guarantees among all efficient algorithms for a large class of computational problems." (Barak and Steurer survey at ICM'14)
- Solving polynomial optimization (Lasserre '01)

■ Prove **polynomial inequalities** with SDP:

$$f(a,b) := a^2 - 2ab + b^2 \ge 0$$

Find z s.t.
$$f(a,b) = \begin{pmatrix} a & b \end{pmatrix} \underbrace{\begin{pmatrix} z_1 & z_2 \\ z_2 & z_3 \end{pmatrix}}_{\geq 0} \begin{pmatrix} a \\ b \end{pmatrix}$$
.

Find z s.t. $a^2 - 2ab + b^2 = z_1a^2 + 2z_2ab + z_3b^2$ (A z = d)

■ Choose a cost **c** e.g. (1,0,1) and solve:

$$\min_{\mathbf{z}} \quad \mathbf{c}^{\top} \mathbf{z}$$
s.t.
$$\sum_{i} \mathbf{F}_{i} z_{i} \succeq \mathbf{F}_{0} , \quad \mathbf{A} \mathbf{z} = \mathbf{d}$$

• Solution
$$\begin{pmatrix} z_1 & z_2 \\ z_2 & z_3 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \succeq 0$$
 (eigenvalues 0 and 2)

•
$$a^2 - 2ab + b^2 = \begin{pmatrix} a & b \end{pmatrix} \underbrace{\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}}_{\geq 0} \begin{pmatrix} a \\ b \end{pmatrix} = (a - b)^2.$$

■ Solving SDP ⇒ Finding SUMS OF SQUARES certificates

Victor Magron

Certification of Roundoff Errors with SDP Relaxations and Formal Interval Methods

General case:

• Semialgebraic set $\mathbf{X} := {\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_m(\mathbf{x}) \ge 0}$

• $p^* := \min_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$: NP hard

Sums of squares (SOS) $\Sigma[\mathbf{x}]$ (e.g. $(x_1 - x_2)^2$)

•
$$\mathcal{Q}(\mathbf{X}) := \left\{ \sigma_0(\mathbf{x}) + \sum_{j=1}^m \sigma_j(\mathbf{x}) g_j(\mathbf{x}), \text{ with } \sigma_j \in \Sigma[\mathbf{x}] \right\}$$

• Fix the degree 2*k* of products: $Q_k(\mathbf{X}) := \left\{ \sigma_0(\mathbf{x}) + \sum_{j=1}^m \sigma_j(\mathbf{x}) g_j(\mathbf{x}), \text{ with } \deg \sigma_j g_j \leq 2k \right\}$

Hierarchy of SDP relaxations:

$$\lambda_k := \sup_{\lambda} \Big\{ \lambda : f - \lambda \in \mathcal{Q}_k(\mathbf{X}) \Big\}$$

- Convergence guarantees $\lambda_k \uparrow f^*$ [Lasserre 01]
- Can be computed with SDP solvers (CSDP, SDPA)
- "No Free Lunch" Rule: $\binom{n+2k}{n}$ SDP variables

• Extension to semialgebraic functions $r(\mathbf{x}) = p(\mathbf{x}) / \sqrt{q(\mathbf{x})}$ [Lasserre-Putinar 10]

15/27

Sparse SDP Optimization [Waki, Lasserre 06]

Correlative sparsity pattern (csp) of variables

 $x_2x_5 + x_3x_6 - x_2x_3 - x_5x_6 + x_1(-x_1 + x_2 + x_3 - x_4 + x_5 + x_6)$

 Maximal cliques C₁,..., C_l
 Average size κ → (^{κ+2k}_κ) variables $C_1 := \{1, 4\}$ $C_2 := \{1, 2, 3, 5\}$ $C_3 := \{1, 3, 5, 6\}$ Dense SDP: 210 variables Sparse SDP: 115 variables

Introduction

Semidefinite Programming for Polynomial Optimization

Upper Bounds with Sparse SDP

Lower Bounds with Robust SDP

Conclusion

Polynomial Programs

Upper Bounds

Input: exact
$$f(\mathbf{x})$$
, floating-point $\hat{f}(\mathbf{x}, \mathbf{e})$, $\mathbf{x} \in \mathbf{X}$, $|e_i| \le 2^{-53}$
Output: Bound for $f - \hat{f}$
1: Error $r(\mathbf{x}, \mathbf{e}) := f(\mathbf{x}) - \hat{f}(\mathbf{x}, \mathbf{e}) = \sum_{\alpha} r_{\alpha}(\mathbf{e}) \mathbf{x}^{\alpha}$

2: Decompose $r(\mathbf{x}, \mathbf{e}) = l(\mathbf{x}, \mathbf{e}) + h(\mathbf{x}, \mathbf{e})$, *l* linear in **e**

3:
$$l(\mathbf{x}, \mathbf{e}) = \sum_{i=1}^{m} s_i(\mathbf{x}) e_i$$

4: Maximal cliques correspond to $\{\mathbf{x}, e_1\}, \ldots, \{\mathbf{x}, e_m\}$

5: Bound $l(\mathbf{x}, \mathbf{e})$ with sparse SDP relaxations (and *h* with IA) Dense relaxation: $\binom{n+m+2k}{n+m}$ SDP variables Sparse relaxation: $m\binom{n+m+2k}{n+1}$ SDP variables

Preliminary Comparisons

↑ Upper Bounds ↑

$$f(\mathbf{x}) := x_2 x_5 + x_3 x_6 - x_2 x_3 - x_5 x_6 + x_1 (-x_1 + x_2 + x_3 - x_4 + x_5 + x_6)$$

$$\mathbf{x} \in [4.00, 6.36]^6$$
, $\mathbf{e} \in [-\epsilon, \epsilon]^{15}$, $\epsilon = 2^{-53}$

Dense SDP: $\binom{6+15+4}{6+15}$ = 12650 variables \sim Out of memory

↑ Upper Bounds *

$$f(\mathbf{x}) := x_2 x_5 + x_3 x_6 - x_2 x_3 - x_5 x_6 + x_1 (-x_1 + x_2 + x_3 - x_4 + x_5 + x_6)$$

$$\mathbf{x} \in [4.00, 6.36]^6$$
, $\mathbf{e} \in [-\epsilon, \epsilon]^{15}$, $\epsilon = 2^{-53}$

Dense SDP: $\binom{6+15+4}{6+15}$ = 12650 variables \sim Out of memory

Sparse SDP Real2Float tool: $15\binom{6+1+4}{6+1} = 4950 \rightsquigarrow 759\epsilon$

1 Upper Bounds

$$f(\mathbf{x}) := x_2 x_5 + x_3 x_6 - x_2 x_3 - x_5 x_6 + x_1 (-x_1 + x_2 + x_3 - x_4 + x_5 + x_6)$$

$$\mathbf{x} \in [4.00, 6.36]^6$$
, $\mathbf{e} \in [-\epsilon, \epsilon]^{15}$, $\epsilon = 2^{-53}$

Dense SDP: $\binom{6+15+4}{6+15}$ = 12650 variables \sim Out of memory

Sparse SDP Real2Float tool: $15\binom{6+1+4}{6+1} = 4950 \rightsquigarrow 759\epsilon$

• Interval arithmetic: 922ϵ (10 × less CPU)

Upper Bounds

$$f(\mathbf{x}) := x_2 x_5 + x_3 x_6 - x_2 x_3 - x_5 x_6 + x_1 (-x_1 + x_2 + x_3 - x_4 + x_5 + x_6)$$

$$\mathbf{x} \in [4.00, 6.36]^6$$
, $\mathbf{e} \in [-\epsilon, \epsilon]^{15}$, $\epsilon = 2^{-53}$

Dense SDP: $\binom{6+15+4}{6+15}$ = 12650 variables \sim Out of memory

- Sparse SDP Real2Float tool: $15\binom{6+1+4}{6+1} = 4950 \rightsquigarrow 759\epsilon$
- Interval arithmetic: 922ϵ (10 × less CPU)

Symbolic Taylor FPTaylor tool: 721ϵ (21 × more CPU)

Victor Magron

Certification of Roundoff Errors with SDP Relaxations and Formal Interval Methods

Upper Bounds

$$f(\mathbf{x}) := x_2 x_5 + x_3 x_6 - x_2 x_3 - x_5 x_6 + x_1 (-x_1 + x_2 + x_3 - x_4 + x_5 + x_6)$$

$$\mathbf{x} \in [4.00, 6.36]^6$$
, $\mathbf{e} \in [-\epsilon, \epsilon]^{15}$, $\epsilon = 2^{-53}$

Dense SDP: $\binom{6+15+4}{6+15}$ = 12650 variables \sim Out of memory

- Sparse SDP Real2Float tool: $15\binom{6+1+4}{6+1} = 4950 \rightsquigarrow 759\epsilon$
- Interval arithmetic: 922ϵ (10 × less CPU)
- Symbolic Taylor FPTaylor tool: 721*ε* (21 × more CPU)

SMT-based rosa tool: 762ϵ (19 × more CPU)

Victor Magron

Certification of Roundoff Errors with SDP Relaxations and Formal Interval Methods

Preliminary Comparisons

† Upper Bounds

Extensions: Transcendental Programs

1 Upper Bounds

Reduce $f^* := \inf_{\mathbf{x} \in \mathbf{K}} f(\mathbf{x})$ to semialgebraic optimization

Upper Bounds

Extensions: Conditionals

if $(p(\mathbf{x}) \leqslant 0) f(\mathbf{x})$; else $g(\mathbf{x})$; Divergence path error:

 $r^* := \max\{ \max_{\substack{p(\mathbf{x}) \leqslant 0, p(\mathbf{x}, \mathbf{e}) \ge 0}} |\hat{f}(\mathbf{x}, \mathbf{e}) - g(\mathbf{x})| \\ \max_{\substack{p(\mathbf{x}) \ge 0, p(\mathbf{x}, \mathbf{e}) \leqslant 0}} |\hat{g}(\mathbf{x}, \mathbf{e}) - f(\mathbf{x})| \\ \max_{\substack{p(\mathbf{x}) \ge 0, p(\mathbf{x}, \mathbf{e}) \ge 0}} |\hat{f}(\mathbf{x}, \mathbf{e}) - f(\mathbf{x})| \\ \max_{\substack{p(\mathbf{x}) \leqslant 0, p(\mathbf{x}, \mathbf{e}) \leqslant 0}} |\hat{g}(\mathbf{x}, \mathbf{e}) - g(\mathbf{x})| \\ \}$

† Upper Bounds

Comparison with rosa

Comparison with FPTaylor

↑ Upper Bounds

Introduction

Semidefinite Programming for Polynomial Optimization

Upper Bounds with Sparse SDP

Lower Bounds with Robust SDP

Conclusion

Method 1: geneig [Lasserre 11]

Generalized eigenvalue problem:

$$f^* := \min_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}) \leqslant \lambda_k := \sup_{\lambda} \quad \lambda$$

s.t. $\mathbf{M}_k(f \mathbf{y}) \succcurlyeq \lambda \mathbf{M}_k(\mathbf{y}).$

Method 1: geneig [Lasserre 11]

Generalized eigenvalue problem:

$$f^* := \min_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}) \leqslant \lambda_k := \sup_{\lambda} \quad \lambda$$

s.t. $\mathbf{M}_k(f \mathbf{y}) \succcurlyeq \lambda \mathbf{M}_k(\mathbf{y})$

Uniform distribution moments: $\mathbf{y}_{\alpha} := \int_{\mathbf{X}} \mathbf{x}^{\alpha} d\mathbf{x}$ Localizing matrices $\mathbf{M}_{k}(f \mathbf{y})$:

Method 1: geneig [Lasserre 11]

Generalized eigenvalue problem:

$$f^* := \min_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}) \leqslant \lambda_k := \sup_{\lambda} \quad \lambda$$

s.t. $\mathbf{M}_k(f \mathbf{y}) \succcurlyeq \lambda \mathbf{M}_k(\mathbf{y})$

Uniform distribution moments: $\mathbf{y}_{\alpha} := \int_{\mathbf{X}} \mathbf{x}^{\alpha} d\mathbf{x}$ Localizing matrices $\mathbf{M}_k(f \mathbf{y})$:

Theorem [Lasserre 11]

 $\lambda_k \downarrow f^*$

Method 2: mvbeta [DeKlerk et al. 16]

↑ Lower Bounds ↑
↓ Lower Bounds ↓

Elementary calculation with $f(\mathbf{x}) = \sum_{\alpha} f_{\alpha} \mathbf{x}^{\alpha}$:

$$f^* := \min_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}) \leqslant f_k^H := \min_{|\eta + \beta| \leqslant 2k} \quad \sum_{\alpha} f_{\alpha} \frac{\gamma_{\eta + \alpha, \beta}}{\gamma_{\eta, \beta}}$$

Method 2: mvbeta [DeKlerk et al. 16]

↑ Lower Bounds ↑
↓ Lower Bounds ↓

Elementary calculation with $f(\mathbf{x}) = \sum_{\alpha} f_{\alpha} \mathbf{x}^{\alpha}$:

$$f^* := \min_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}) \leqslant f_k^H := \min_{|\eta + \beta| \leqslant 2k} \quad \sum_{\alpha} f_{\alpha} \frac{\gamma_{\eta + \alpha, \beta}}{\gamma_{\eta, \beta}}$$

Multivariate beta distribution moments:

$$\gamma_{\eta,\beta} := \int_{\mathbf{X}} \mathbf{x}^{\eta} (1-\mathbf{x})^{\beta} d\mathbf{x} \,.$$

Method 2: mvbeta [DeKlerk et al. 16]

↑ Lower Bounds ↑ ↓ Lower Bounds ↓

Elementary calculation with $f(\mathbf{x}) = \sum_{\alpha} f_{\alpha} \mathbf{x}^{\alpha}$:

$$f^* := \min_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}) \leqslant f_k^H := \min_{|\eta + \beta| \leqslant 2k} \quad \sum_{\alpha} f_{\alpha} \frac{\gamma_{\eta + \alpha, \beta}}{\gamma_{\eta, \beta}}$$

Multivariate beta distribution moments:

$$\gamma_{\eta,\beta} := \int_{\mathbf{X}} \mathbf{x}^{\eta} (1-\mathbf{x})^{\beta} d\mathbf{x} \,.$$

Theorem [DeKlerk et al. 16]

 $f_k^H \downarrow f^*$

Method 3: robustsdp

Robust SDP with
$$l(\mathbf{x}, \mathbf{e}) = \sum_{i=1}^{m} s_i(\mathbf{x}) e_i$$
:
 $l^* := \min_{(\mathbf{x}, \mathbf{e}) \in \mathbf{X} \times \mathbf{E}} l(\mathbf{x}, \mathbf{e}) \leq \lambda'_k := \sup_{\lambda} \lambda$
s.t. $\forall \mathbf{e} \in \mathbf{E}, \ \mathbf{M}_k(l \mathbf{y}) \geq \lambda \mathbf{M}_k(\mathbf{y}).$

Method 3: robustsdp

Robust SDP with
$$l(\mathbf{x}, \mathbf{e}) = \sum_{i=1}^{m} s_i(\mathbf{x})e_i$$
:
 $l^* := \min_{(\mathbf{x}, \mathbf{e}) \in \mathbf{X} \times \mathbf{E}} l(\mathbf{x}, \mathbf{e}) \leq \lambda'_k := \sup_{\lambda} \lambda$
s.t. $\forall \mathbf{e} \in \mathbf{E}, \mathbf{M}_k(l \mathbf{y}) \succcurlyeq \lambda \mathbf{M}_k(\mathbf{y})$.
Linearity $\rightsquigarrow \mathbf{M}_k(l \mathbf{y}) = \sum_{i=1}^{m} e_i \mathbf{M}_k(s_i \mathbf{y})$
Factorize $\mathbf{M}_k(s_i \mathbf{y}) = \mathbf{L}_k^i \mathbf{R}_k^i, \mathbf{L}_k := [\mathbf{L}_k^1 \cdots \mathbf{L}_k^m], \mathbf{R}_k := [\mathbf{R}_k^1 \cdots \mathbf{R}_k^m]^T$

Method 3: robustsdp

Robust SDP with
$$l(\mathbf{x}, \mathbf{e}) = \sum_{i=1}^{m} s_i(\mathbf{x})e_i$$
:
 $l^* := \min_{(\mathbf{x}, \mathbf{e}) \in \mathbf{X} \times \mathbf{E}} l(\mathbf{x}, \mathbf{e}) \leq \lambda'_k := \sup_{\lambda} \lambda$
s.t. $\forall \mathbf{e} \in \mathbf{E}, \mathbf{M}_k(l \mathbf{y}) \succcurlyeq \lambda \mathbf{M}_k(\mathbf{y})$.
Linearity $\rightsquigarrow \mathbf{M}_k(l \mathbf{y}) = \sum_{i=1}^{m} e_i \mathbf{M}_k(s_i \mathbf{y})$
Factorize $\mathbf{M}_k(s_i \mathbf{y}) = \mathbf{L}_k^i \mathbf{R}_k^i, \mathbf{L}_k := [\mathbf{L}_k^1 \cdots \mathbf{L}_k^m], \mathbf{R}_k := [\mathbf{R}_k^1 \cdots \mathbf{R}_k^m]^T$
Theorem following from [El Ghaoui et al. 98]
 $\lambda'_k \downarrow l^* \text{ and } \lambda'_k = \sup_{\lambda, \mathbf{S}, \mathbf{G}} \lambda$
s.t. $\begin{pmatrix} -\lambda \mathbf{M}_k(\mathbf{y}) - \mathbf{L}_k \mathbf{S} \mathbf{L}_k^T & \mathbf{R}_k^T + \mathbf{L}_k \mathbf{G} \\ \mathbf{R}_k - \mathbf{G} \mathbf{L}_k^T & \mathbf{S} \end{pmatrix} \succcurlyeq 0,$
 $\mathbf{S}^T = \mathbf{S}, \mathbf{G}^T = -\mathbf{G}.$

Benchmark kepler0 with k = 2

↑ Lower Bounds ↑ ↓ Lower Bounds ↓

Introduction

Semidefinite Programming for Polynomial Optimization

Upper Bounds with Sparse SDP

Lower Bounds with Robust SDP

Conclusion

Sparse/Robust SDP relaxations for NONLINEAR PROGRAMS:

- Polynomial and transcendental programs
- Certified [™] → Formal ^P roundoff error bounds (Joint work with T. Weisser and B. Werner)
- Real2Float open source tool:

http://nl-certify.forge.ocamlcore.org/real2float.html

27 / 27

Conclusion

Further research:

Automatic **FPGA** code generation

Roundoff error analysis with while/for loops

Master / PhD Positions Available !

End

Thank you for your attention!

http://www-verimag.imag.fr/~magron

 V. Magron, G. Constantinides, A. Donaldson. Certified Roundoff Error Bounds Using Semidefinite Programming, arxiv.org/abs/1507.03331