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Hybrid Cyber-Physical Systems

n Interaction discrete  
     + continuous dynamics 

n Safety-critical  
     embedded systems 

n Networked  
     autonomous systems3



Hybrid Cyber-Physical Systems

nModelling → hybrid automaton (Alur, et al. 1995) 

l Non-linear continuous dynamics  
l Nonlinear guards sets 
l Nonlinear reset functions  
l Bounded uncertainty

Continuous dynamics

Discrete dynamics

l

x ∈ Inv(l)

l′

x′ ∈ Inv(l′)

e : g(x) ≥ 0

ẋ′ ∈ Flow(l′, x′)

x′ = r(e, x)

ẋ ∈ Flow(l, x)

x ∈ Init(l)
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nExample : the bouncing ball

Hybrid Cyber-Physical Systems

initial conditions

discrete transition 
jump 
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nExample : the bouncing ball
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Estimation of Hybrid State

nModelling → hybrid automaton 
l Nonlinear … 
l Bounded uncertainty 

!

nHybrid State Estimation  
→ reconstruct system variables 
l Switching sequence 
l Continuous variables 
l Hybrid solution trajectory tube

Author's personal copy
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Fig. 3. Time history of the x2 component of the reachable set of (52) as obtained with Theorem 2, with an initial domain for state vector of size 100%. The
curve labelled ‘no uncertainty’ corresponds to no uncertainty in the parameter vector (CPU time= 38.26 s PIV 2GHz) and the one labelled ‘with uncertainty’
corresponds to the presence of uncertainty in the parameter vector (CPU time = 38.58 s PIV 2 GHz).
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Fig. 4. Switching sequence for the hybrid automaton which drives the upper bounding system for (53).

the latter, i.e. using functions �i⇧(.) defined in Rule 2, the upper bounding systems are obtained by replacing parameter
components in each algebraic expression of fi� either by their upper or by lower bound, form-typemodes, or by using whole
parameter uncertainty domain, for s-type modes. Since there are 10 partial derivatives to monitor and 3 possible values for
the parameter components (lower bound / upper bound / whole uncertainty interval), the set Q of discrete modes contains
310 elements, and we merely use a word of ternary digits of length 10, to number the modes. Note however, that not all of
them may be activated.

Fig. 4 shows the switching sequence for the hybrid automaton which derives the upper component-wise bounds of the
reachable set of (53), as generated by algorithm Hybrid-Upper-Bounding. Some modes are active on very short time
intervals. Fig. 5 magnifies the switching sequence around t = 60 s. In fact, such modes are s-type modes which are usually
active only over one or two integration time intervals.

The automatonwhich derives the lower component-wise bounds is obtained in a similarmanner. The switching sequence
for this automaton is shown in Fig. 6.

Note that both initial state vector and parameter vector are taken uncertain with large uncertainties. Fig. 7 shows the
time history of the x12 component of the reachable set. Obviously, even for very large parameter boxes the hybrid bracketing
method successfully computes the reachable set.
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Set Membership Estimation

n Unknown but bounded-error framework

Set membership estimation
Continuous-time systems
High dimensional system

Context
State-of-the-art

Set-membership or bounded error approach
(Belforte et al., 1990) ; (Milanese et al., 1996) ;(Vicino and Zappa, 1996) ;
(Walter et al., 1990) ; (Norton et al., 1994, 1995)

  

f(p) 

n 

ys 
Optimisation de J(e(p))

e(p) 

ys p1 

p2 

Régions de confiance 

f(p) 

n 

Set membersip algorithm 

Y p1 

p2 

Solution set

Y 

 

Hypothesis

Uncertainties and errors are bounded with known prior bounds

A set of feasible solutions

S = {p � P|f(p) � Y} = f�1(Y) ⇥ P

Nacim Ramdani et al. Set-membership identification . . .

Set Membership Algorithm
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n State estimation with continuous systems 
l Interval observers  
‣ (Moisan, et al. 2009), (Mazenc & Bernard, 2010),  

(Meslem & Ramdani, 2011), (Raïssi, et al., 2012),  
(Combastel, 2013), (El Thabet, et al. 2014), (Efimov, et al. 2015)  
!

‣ Monotonicity 

‣ Change of coordinates 

‣ LMI …. 

‣ Ensure practical stability
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n State estimation with continuous systems 
l Prediction - Correction / Filtering approaches  
‣ (Raïssi et al., 2005), (Meslem, et al, 2010),  

(Milanese & Novara, 2011), (Kieffer & Walter, 2011) … 
!

‣ Reachability  
+ Set inversion 

‣ Forward backward 
consistency
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Set Membership Estimation

n Set inversion. Parameter estimation 
l Branch-&-bound, branch-&-prune, interval contractors … 

 (Jaulin, et al. 93) (Raïssi et al., 2004)



n State estimation with Continuous systems 
l Interval observers 
l Prediction-correction / Filtering approaches 

n State estimation with Hybrid systems 
l Piecewise affine systems (Bemporad, et al. 2005) 
l ODE + CSP (Goldsztejn, et al., 2010) 
l Nonlinear case (Benazera & Travé-Massuyès, 2009) 
l SAT mod ODE (Eggers, Ramdani, et al., 2012)  
l Reachability-based (Maïga, Ramdani, et al. 2015).
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n Predictor-Corrector approach for hybrid systems

15
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n Predictor-Corrector approach for hybrid systems
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Reachability based approach

l

x ∈ Inv(l)

l′

x′ ∈ Inv(l′)

e : g(x) ≥ 0

ẋ′ ∈ Flow(l′, x′)

x′ = r(e, x)

ẋ ∈ Flow(l, x)

x ∈ Init(l)
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Reachability based approach

guard

mode = 1

mode = 2

reset mapping
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Reachability based approach

X1(t0)
ϕ(., t0, X(t0))

guard

mode = 1

mode = 2

reset mapping

[Maïga, Ramdani, Travé Massuyes & Combastel,  IEEE TAC 2016]. 
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Reachability based approach

X1(t0)
ϕ(., t0, X(t0))

guard
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reset mapping

[Maïga, Ramdani, Travé Massuyes & Combastel,  IEEE TAC 2016]. 



17

Reachability based approach
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Reachability based approach

Y(t1
)

X1(t0)

X1+(t1)

guard

mode = 1

mode = 2

reset mapping

X2+(t1)
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Reachability based approach

Y(t1
)

X1(t0)

X1+(t1)

guard g1-1(.)

g2-1(.)

mode = 1

mode = 2

reset mapping

X2+(t1)
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Reachability based approach

Y(t1
)

X1(t0)

X1+(t1)

X1(t1)=X1+(t1)∩g1-1(Y(t1))

guard g1-1(.)

g2-1(.)

mode = 1

mode = 2

X2(t1)=X2+(t1)∩g2-1(Y(t1))

reset mapping

X2+(t1)
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Reachability based approach

Y(t1
)

X1(t0)

X1+(t1)

X1(t1)=X1+(t1)∩g1-1(Y(t1))

guard g1-1(.)

g2-1(.)

mode = 1

mode = 2

X2(t1)=X2+(t1)∩g2-1(Y(t1))

reset mapping

t1 
{q=1, X1(t1)} ∪ 
{q=2, X2(t1)}

Reconstructed 
Hybrid Solution 
State Trajectory:

X2+(t1)
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Continuous Reachability

nGuaranteed set integration
l … with interval Taylor methods. 

‣ (Moore, 66) (Lohner, 88) (Rihm, 94) (Berz, 98) (Nedialkov, 99)

l … with interval Taylor models. 
‣ (Chen, 2012) 

l also via interval Runge Kutta.
‣ (Alexandre dit Sandretto & Chapoutot, 2015)
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Continuous Reachability

nGuaranteed set integration
l … with interval Taylor methods. 

‣ (Moore, 66) (Lohner, 88) (Rihm, 94) (Berz, 98) (Nedialkov, 99)

l … with interval Taylor models. 
‣ (Chen, 2012) 

l also via interval Runge Kutta.
‣ (Alexandre dit Sandretto & Chapoutot, 2015)

nComparison theorems for differential inequalities
n Monotone systems 

‣ (Ramdani et al., 2010)

n Muller’s theorem
‣ (Kieffer et al. 2006) (Ramdani, et al. 2006), (Ramdani, et al. 2009)
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Hybrid Reachability Computation

nGuaranteed event detection & localization 
l An interval constraint propagation approach  

l(Ramdani & Nedialkov, Nonlinear Analysis Hybrid Systems 2011)
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Interval Taylor Methods

Guaranteed set integration with Taylor methods
(Moore,66) (Eijgenraam,81) (Lohner,88) (Rihm,94) (Berz,98) (Nedialkov,99)

ẋ(t) = f (x,p, t), t0 ≤ t ≤ tN , x(t0) ∈ [x0] , p ∈ [p]

Time grid → t0 < t1 < t2 < · · · < tN

[xj ] [xj+1]

actual solution x⋆

a priori [x̃j ]

Analytical solution for [x](t), t ∈ [tj , tj+1]

[x](t) = [xj ] +
k−1
∑

i=1
(t − tj)i f [i ]([xj ], [p]) + (t − tj)k f [k]([x̃j ], [p])

N. Ramdani (INRIA) Hybrid Nonlinear Reachability 11 / 28
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l Improved and enhanced version. A faster version.  

l(Maïga, Ramdani, et al., IEEE CDC 2013, ECC 2014)
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nDetecting and localizing events 
l Improved and enhanced version  

l Impact of uncertainty on sliding mode control  
(Maïga, Ramdani, Travé-Massuyès, Combastel, IEEE TAC 2016)

Hybrid Reachability Computation
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nDetecting and localizing events 
l Improved and enhanced version  

l Impact of uncertainty on sliding mode control  
(Maïga, Ramdani, Travé-Massuyès, Combastel, IEEE TAC 2016)

Hybrid Reachability Computation
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Solution trajectory tube

Mean value form + Lohner’s QR transformation method 

is a particular zonotope 
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 Zonotope of minimum size enclosing  
 the intersection of a zonotope and a strip 

zonotope support strip
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Hybrid Reachability based 
Predictor Corrector approach



Outline

n Hybrid dynamical systems 

n Set membership estimation 

n Hybrid reachability based approach 

n Example  

n Research directions

30



31

nHybrid Mass-Spring 
l Velocity-dependent damping. Mode switching driven by velocity.

Parameter identification
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nHybrid Mass-Spring 
l Unknown initial mode. 

l CPU time approx. 1m20s

State Estimation
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Research directions

n Contractors for hybrid dynamical systems
l To build upon a hybrid reachability approach

n Push forward set membership estimation 
l SM hybrid state estimation of nonlinear hybrid systems

n Address SM estimation with controlled sampling
l Event- & Self-triggered SM hybrid state estimation  
of nonlinear hybrid systems

n Combine with decision making
l Application to actual hybrid systems,  
       in robotics, smart buildings, personalized medicine 
…
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