Interval unions
on rigorous
optimization

Tiago

Montanher
Ferenc
Domes,
Hermann
Schichl,
Arnold
Neumaier

Motivation
Interval unions
Interval union
linear systems
Interval union Newton
method

Interval unions on rigorous optimization

Tiago Montanher, Ferenc Domes, Hermann Schichl, Arnold Neumaier

University of Vienna

2016.06.20 Lyon, France

Why interval unions?

Interval unions

on rigorous
optimization

Tiago

Montanher
Ferenc
Domes,
Hermann
Schichl,
Arnold
Neumaier

Motivation

Interval unions
Interval union linear systems

- Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a differentiable function and \mathbf{x}_{0} an interval where we are looking for x^{*} such that $f\left(x^{*}\right)=0$.
- Interval Newton method encloses all roots of f.

$$
\mathbf{x}^{(k+1)}:=N\left(\mathbf{x}^{k}\right) \cap \mathbf{x}^{k}, \quad N(\mathbf{x})=\check{\mathbf{x}}-\frac{f(\check{\mathbf{x}})}{\mathbf{f}^{\prime}(\mathbf{x})}, \quad k=0,1,2, \ldots
$$

- What if $0 \in \mathbf{f}^{\prime}(\mathbf{x})$? Apply the extended division!

Why interval unions?

Interval unions

on rigorous optimization

Tiago

Montanher,
Ferenc
Domes,
Hermann
Schichl,
Arnold
Neumaier

Motivation
Interval unions
Interval union linear systems

Let $\mathbf{a}=[\underline{a}, \bar{a}]$ and $\mathbf{b}=[\underline{b}, \bar{b}]$. The extended division is given by

$$
\mathbf{a} / \mathbf{b}:= \begin{cases}\mathbf{a} \cdot[1 / \bar{b}, 1 / \underline{b}] & \text { if } 0 \notin \mathbf{b}, \\ (-\infty,+\infty) & \text { if } 0 \in \mathbf{a} \wedge 0 \in \mathbf{b}, \\ {[\bar{a} / \underline{b},+\infty)} & \text { if } \bar{a}<0 \wedge \underline{b}<\bar{b}=0, \\ (-\infty, \bar{a} / \bar{b}] \cup[\bar{a} / \underline{b},+\infty) & \text { if } \bar{a}<0 \wedge \underline{b}<0<\bar{b}, * \\ (-\infty, \bar{a} / \bar{b}] & \text { if } \bar{a}<0 \wedge 0=\underline{b}<\bar{b}, \\ (-\infty, \underline{a} / \underline{b}] & \text { if } 0<\underline{a} \wedge \underline{b}<\bar{b}=0, \\ (-\infty, \underline{a} / \underline{b}] \cup[\underline{a} / \bar{b},+\infty) & \text { if } 0<\underline{a} \wedge \underline{b}<0<\bar{b}, * \\ {[\underline{a} / \bar{b},+\infty)} & \text { if } 0<\underline{a} \wedge 0=\underline{b}<\bar{b}, \\ \emptyset & \text { if } 0 \notin \mathbf{a} \wedge \underline{b}=\bar{b}=0 .\end{cases}
$$

Why interval unions?

Interval unions
on rigorous
optimization

Tiago

Montanher
Ferenc
Domes,
Hermann
Schichl,
Arnold
Neumaier

Motivation
Interval unions
Interval union linear systems

Interval union Newton method

- Division by intervals containing zero is problematic. For example, if $\mathbf{a}=[2,3]$ and $\mathbf{b}=[-1,1]$ then

$$
\mathbf{x}=\frac{[2,3]}{[-1,1]}=(-\infty,-2] \cup[2, \infty)
$$

- x is not an interval.
- Extended division requires special treatment from a computational point of view.

What is an interval union?

Interval unions
on rigorous
optimization

Tiago

Montanher
Ferenc
Domes,
Hermann
Schichl,
Arnold
Neumaier

Motivation

Interval unions
Interval union linear systems

Interval union Newton method

- An interval union is a finite set of disjoint intervals:

$$
\boldsymbol{u}=\left(\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k}\right) \text { with } \quad \begin{array}{ll}
\boldsymbol{u}_{i} \in \overline{\mathbb{I} R} & \forall i=1, \ldots, k \\
\overline{\boldsymbol{u}}_{i}<\underline{u}_{i+1} & \forall i=1, \ldots, k-1 .
\end{array}
$$

where

$$
\overline{\mathbb{I} \mathbb{R}}:=\{[\underline{a}, \bar{a}] \cap \mathbb{R} \mid \underline{a} \leq \bar{a}, \underline{a}, \bar{a} \in \mathbb{R} \cup\{-\infty, \infty\}\} .
$$

For example:

$$
\begin{gathered}
\boldsymbol{u}=\{[-1,0],[2,3]\} \\
\boldsymbol{v}=\{(-\infty,-1],[1, \infty)\} \\
\boldsymbol{w}=\{[2,2],[3,3]\}
\end{gathered}
$$

Interval union arithmetic

Interval unions
on rigorous
optimization
Tiago
Montanher
Ferenc
Domes,
Hermann
Schichl,
Arnold
Neumaier

Motivation

Interval unions
Interval union linear systems

- Let $u=\{[-1,1],[2,3]\}$ and $\mathfrak{v}=\{[-3,-2],[5,6]\}$

$$
\begin{gathered}
u+\mathfrak{v}=\{[-4,1],[4,9]\} \\
\boldsymbol{u}-\boldsymbol{v}=\{[-7,-2],[1,6]\} \\
u * v=\{[-9,6],[10,18]\} . \\
\mathfrak{v} / \boldsymbol{u}=\{(-\infty,-2],[-1.5,-0.6666],[1.6666, \infty)\} .
\end{gathered}
$$

What holds

Interval unions

on rigorous optimization

Tiago

Montanher
Ferenc
Domes,
Hermann
Schichl,
Arnold
Neumaier

Motivation

Interval unions
Interval union linear systems

- Magnitude: $|\boldsymbol{u}|:=\max \left(\left|\mathbf{u}_{1}\right|, \ldots,\left|\mathbf{u}_{k}\right|\right)=\max \left(\left|\underline{\mathbf{u}}_{1}\right|,\left|\overline{\mathbf{u}}_{k}\right|\right)$,
- Mignitude: $\langle\boldsymbol{u}\rangle:=\min \left(\left\langle\mathbf{u}_{1}\right\rangle, \ldots,\left\langle\mathbf{u}_{k}\right\rangle\right)$,
- Max and $\operatorname{Min}: \max (u):=\overline{\mathbf{u}}_{k}, \min (\boldsymbol{u}):=\underline{\mathbf{u}}_{1}$,
- Inclusion isotonicity:

$$
\mathfrak{v}^{\prime} \subseteq \mathfrak{v}, u^{\prime} \subseteq u \Rightarrow \mathfrak{v}^{\prime} \circ u^{\prime} \subseteq \mathfrak{v} \circ u \text { for all }\{+,-, /, *\}
$$

- Fundamental Theorem: If \mathbf{f} is inclusion isotonic and the interval union extension of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ then $f_{r g}(u) \subseteq \mathbf{f}(u)$.

What does not

Interval unions
on rigorous
optimization

Tiago

Montanher,
Ferenc
Domes,
Hermann
Schichl,
Arnold
Neumaier

$$
f(x) \in f(z)+\mathbf{g}(\mathbf{x})^{T}(x-z), \quad \forall x \in \mathbf{x}
$$

- Let $f(x)=x^{2}$ and $u=\{[-3,1],[1,3]\}$. Take $x=-2 \in[-3,-1]$ and $z=2 \in[1,3]$. There is not $\xi \in u$ such that

$$
4=4-8 \xi
$$

Interval union matrices and vectors

Interval unions
on rigorous
optimization

Tiago

Montanher,
Ferenc
Domes,
Hermann
Schichl,
Arnold
Neumaier
Motivation
Interval unions
Interval union linear systems

$$
\mathcal{A}=\left(\begin{array}{ll}
\{[-5,-3],[4,5]\} & \{[0.5,1.0],[2,3]\} \\
\{[0.5,1.0],[2,3]\} & \{[-3,-2],[2,3]\}
\end{array}\right)
$$

$$
\boldsymbol{b}=(\{[-1,1],[1.5,2],[3,4]\},\{[-1,0],[1,3],[5,7]\})^{T}
$$

- Regularity, M-matrices and H-matrices are well defined.
- \mathcal{A} represents 16 interval matrices(with only 8 intervals) and $\boldsymbol{b} 9$ boxes(6 intervals).

Interval union matrices and vectors

Interval unions
on rigorous
optimization

Tiago

Montanher,
Ferenc
Domes,
Hermann
Schichl,
Arnold
Neumaier

Motivation
Interval unions
Interval union linear systems

Interval union
Newton method

- An interval union linear system is the family of equations

$$
A x=b \quad(A \in \mathcal{A}, b \in \mathfrak{b})
$$

- The solution set is defined by

$$
\Sigma(\mathcal{A}, \boldsymbol{b}):=\left\{x \in \mathbb{R}^{n} \mid A x=b \text { for some } A \in \mathcal{A}, b \in \mathfrak{b}\right\} .
$$

- Let $\mathscr{B}(\mathfrak{v}):=\mathfrak{v}_{1} \otimes \mathfrak{v}_{2} \otimes, \ldots \otimes \mathfrak{v}_{n}, \mathcal{A} \in \mathcal{U}^{n \times n}$ and $\mathfrak{b} \in \mathcal{U}^{n}$. Then

$$
\bigcup_{\substack{\mathbf{A}_{i} \in \mathscr{B}(\mathcal{A}) \\ \mathbf{b}_{j} \in \mathscr{B}(\boldsymbol{b})}} \Sigma\left(\mathbf{A}_{i}, \mathbf{b}_{j}\right) \equiv \Sigma(\mathcal{A}, \boldsymbol{b})
$$

Interval unions

on rigorous
optimization

Tiago

Montanher,
Ferenc
Domes,
Hermann
Schichl,
Arnold
Neumaier

- Let S be a finite set of intervals, the union creator $\mathcal{U}(S)$ is the smallest u that satisfies $\mathbf{a} \subseteq u$ for all $\mathbf{a} \in S$.
- Finding $\mathcal{U}(\Sigma(\mathcal{A}, \boldsymbol{b}))$ is $N P$-Hard.
- In general, we look for x such that

$$
\mathcal{U}(\Sigma(\mathcal{A}, \boldsymbol{b})) \subseteq \boldsymbol{x} .
$$

- If \mathcal{A} is an M-matrix and \mathcal{B} is degenerate then

$$
\mathcal{U}(\Sigma(\mathcal{A}, \boldsymbol{b}))=\bigcup_{\substack{\mathbf{A}_{i} \in \mathscr{B}(\mathcal{A}) \\ \mathbf{b}_{j} \in \mathscr{B}(\boldsymbol{b})}}\left[\underline{\mathbf{A}}_{i}, \overline{\mathbf{A}}_{i}\right] \mathbf{b}_{j}
$$

An interval linear system

Interval unions
on rigorous
optimization
Tiago
Montanher,
Ferenc
Domes,
Hermann
Schichl,
Arnold
Neumaier

Motivation
Interval unions
Interval union linear systems

Interval union

Newton
method

- Let

$$
\mathbf{A}=\left(\begin{array}{cc}
{[3.5,4.5]} & {[1.0,2.0]} \\
{[1.0,2.0]} & {[-0.5,0.5]}
\end{array}\right) \text { and } \mathbf{b}=\binom{[1.0,2.0]}{[1.5,2.0]}
$$

- Interval union Gaussian elimination(without pivoting)

$$
q=\frac{-a_{21}}{a_{11}}, \quad x_{2}=\frac{b_{2}+b_{1} q}{a_{22}+a_{12} q}, \quad x_{1}=\frac{\boldsymbol{b}_{1}-a_{12} x_{2}}{a_{11}}
$$

An interval linear system

Interval unions
on rigorous optimization
Tiago
Montanher,
Ferenc
Domes,
Hermann
Schichl,
Arnold
Neumaier

Motivation
Interval unions

Interval union

 linear systems
Interval union

Newton
method

Figure: The solution obtained by the interval Gauss-Seidel is given in the solid box. The solution obtained by the interval union Gaussian elimination is given by dashed boxes.

An interval union linear system

Interval unions
on rigorous
optimization
Tiago
Montanher,
Ferenc
Domes,
Hermann
Schichl,
Arnold
Neumaier

Motivation
Interval unions
Interval union linear systems

- Let

$$
\mathcal{A}=\left(\begin{array}{cc}
\{[-5,-3],[4,5]\} & \{[0.5,1.0]\} \\
\{[0.5,1.0]\} & \{[-3,-2],[2,3]\}
\end{array}\right)
$$

and

$$
\mathbf{b}=\{[1.0,2.0],[1.5,2.0]\}^{T}
$$

- We solve only one interval union linear system instead of 4 interval linear systems.

An interval union linear system

Interval unions
on rigorous optimization
Tiago
Montanher,
Ferenc
Domes,
Hermann
Schichl,
Arnold
Neumaier

Motivation
Interval unions

Interval union

 linear systemsInterval union Newton method

Figure : Interval Gauss-Seidel solution is given in the outer solid box, interval union Gaussian elimination is represented by dashed boxes. The solution set of each interval system and its interval hull in colored solid boxes.

Interval union Gauss-Seidel

Interval unions
on rigorous
optimization
Tiago
Montanher
Ferenc
Domes,
Hermann
Schichl,
Arnold
Neumaier

Motivation
Interval unions
Interval union linear systems

Interval union Newton method

Input: $\mathcal{A}, \mathfrak{B}$ and \boldsymbol{x}
Output: \boldsymbol{y} such that $\Sigma(\mathcal{A}, \mathcal{B}) \cap \boldsymbol{x} \subseteq \boldsymbol{y} \subseteq \boldsymbol{x}$.
for $i=1, \ldots, n$ do
$\Delta \leftarrow \boldsymbol{b}_{i}-\sum_{j=1}^{i-1} \mathcal{A}_{i j} \boldsymbol{y}_{j}-\sum_{j=i+1}^{n} \mathcal{A}_{i j} \boldsymbol{x}_{j}$
if $0 \notin \Delta-\mathcal{A}_{i i} x_{i}$ then
return \varnothing;
end if
if $0 \in s, 0 \in \mathcal{A}_{i i}$ then $\boldsymbol{y}_{i} \leftarrow \boldsymbol{x}_{i} ;$ continue;
end if
$\boldsymbol{y}_{i} \leftarrow \boldsymbol{x}_{i} \cap\left(\frac{\delta}{\mathcal{A}_{i i}}\right)$
if $\boldsymbol{y}_{i}==\varnothing$ then
return \varnothing;
end if
end for
return y;

Example 1 revisited

Interval unions
on rigorous optimization
Tiago
Montanher,
Ferenc
Domes,
Hermann
Schichl,
Arnold
Neumaier

Motivation
Interval unions

Interval union

linear systems
Interval union
Newton
method

Figure : The solution obtained by the interval Gauss-Seidel is given in the solid box. The solution obtained by the interval union Gauss-Seidel procedure is given by dashed boxes.

Example 1 revisited - Complete Gauss-Seidel

Interval unions
on rigorous optimization
Tiago
Montanher,
Ferenc
Domes,
Hermann
Schichl,
Arnold
Neumaier

Motivation
Interval unions

Interval union

linear systems
Interval union
Newton
method

Figure : The solution obtained by the complete interval Gauss-Seidel is given in the solid box. The solution obtained by the complete interval union Gauss Seidel procedure is given by dashed boxes.

Interval union Gauss-Seidel

Interval unions
on rigorous optimization

Tiago
Montanher,
Ferenc
Domes,
Hermann
Schichl,
Arnold
Neumaier

Motivation
Interval unions
Interval union linear systems

Interval union Newton method

Figure: Width reduction(in average) obtained by interval and interval union Gauss-Seidel in random matrices of size $N=\{2,5,10,15\}$. We perform 1000 experiments for each N.

The interval union Newton operator

- Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a differentiable function and x_{0} an interval union box.

$$
f\left(x^{*}\right)=0, \quad x^{*} \in x_{0} .
$$

- The interval union Newton operator is

$$
\boldsymbol{x}_{i}^{k+1}=\boldsymbol{x}_{i}^{k} \cap \boldsymbol{y}_{i}, \quad i=1 \ldots n, k \geq 0
$$

where

$$
\boldsymbol{y}_{i}=\check{\boldsymbol{x}}_{i}+\frac{\mathbf{r}_{i}(\boldsymbol{x})}{\mathcal{I}_{i i}(\boldsymbol{x})}, \quad \mathbf{r}_{i}=f_{i}(\check{\boldsymbol{x}})-\sum_{\substack{j=1 \\ j \neq i}}^{n} \mathscr{I}_{i j}(\boldsymbol{x})\left(\boldsymbol{x}_{j}-{ }_{c} \check{\boldsymbol{x}}_{j}\right) .
$$

The interval union Newton operator

Interval unions

on rigorous optimization

Tiago

Montanher,
Ferenc
Domes,
Hermann
Schichl,
Arnold
Neumaier

Motivation
Interval unions
Interval union linear systems

Interval union Newton method

- We want to enclose the solution set of

$$
\begin{aligned}
& \quad x_{1}^{2}+x_{2}^{2}-1=0, \quad x_{1}^{2}-x_{2}=0 \\
& \text { on } \mathbf{x}=([0,0.9482],[-1.2502,0])^{T}
\end{aligned}
$$

- Interval Newton reduces the volume in 45% :

$$
x \in \mathbf{x}^{\prime}=([0,0.9482],[-1.2502,-0.8486])^{T}
$$

and

$$
x \in \mathbf{x}^{\prime \prime}=([0,0.9482],[-0.2896,0.0000])^{T} .
$$

- Interval union Newton reduces the volume in 81% :

$$
\boldsymbol{x}^{*}=\binom{\{[0,0.1933],[0.825,0.9482]\}}{\{[-1.2502,-0.8486],[-0.2896,0]\}}
$$

The interval union Newton operator

Interval unions
on rigorous optimization

Tiago
Montanher,
Ferenc
Domes,
Hermann
Schichl,
Arnold
Neumaier

Motivation
Interval unions
Interval union linear systems

Interval union Newton method

Figure: Width reduction(in average) obtained by interval and union Newton operators. Experiment performed on 102 multivariate problems taking a symmetric box around a known solution.

Unidimensional interval union Newton

Interval unions
on rigorous optimization

Tiago

Montanher,
Ferenc
Domes,
Hermann
Schichl,
Arnold
Neumaier

Motivation
Interval unions
Interval union linear systems

Interval union Newton method

Input: The interval union u_{0} and the narrow component tolerance $\epsilon>0$. Output: The interval union $\Delta=\left(\mathbf{x}_{i}\right)$ with $\operatorname{wid}\left(\mathbf{x}_{i}\right)<\epsilon$ and the guarantee that for all $y \in u_{0}$ with $f(y)=0$ there exist an \mathbf{x}_{i} such that $y \in \mathbf{x}_{i}$. $u \leftarrow u_{0}$;
while $u \neq \varnothing$ do
$u \leftarrow u \cap N(u) ; \quad \triangleright$ Newton operator
$\boldsymbol{x} \leftarrow \varnothing$;
for $\mathbf{x}_{i} \in u$ do
if $0 \notin \mathbf{f}\left(\mathbf{x}_{i}\right)$ then
if $\operatorname{wid}\left(\mathbf{x}_{i}\right)<\epsilon$ then $S \leftarrow \mathbf{x}_{i} ;$
else $x \leftarrow$ checkAndRemove $\left(\mathbf{x}_{i}, \epsilon, \mathbf{f}\right) ;$ end if end if
end for
$u \leftarrow x$;
end while
return S;

Unidimensional interval union Newton

Interval unions
on rigorous optimization

Tiago Montanher,

Ferenc
Domes,
Hermann
Schichl,
Arnold
Neumaier

Interval union Newton method

fun	INewton			IUNewton			fun	INewton			IUNewton		
	Sol	FunEv	Wid	Sol	FunEv	Wid		Sol	FunEv	Wid	Sol	FunEv	Wid
f_{1}	3212	6424	10.0	410	6883	1E-7	f_{2}	3	164	1E-7	1	39	1E-7
f_{3}	3454	6916	10.0	6367	82782	1E-7	f_{4}	2	97	1E-7	1	37	1E-7
f_{5}	23832	95393	1E-2	3	59629	1E-2	f_{6}	2	38	1E-7	2	39	1E-7
f_{7}	14673	38638	0.1	7	367	1E-7	f_{8}	11521	96463	1	32	1931	1E-7
f_{9}	2	67	1E-7	2	50	1E-7	f_{10}	778	1569	10.0	63	893	1E-7
f_{11}	8082	22861	0.1	0	227	1E-7	f_{12}	5397	63841	1E-7	15	213	1E-7
f_{13}	0	1	1E-7	0	2	1E-7	f_{14}	0	1	1E-7	0	3	1E-7
f_{15}	15306	31865	1	15712	57924	1E-3	f_{16}	786	10218	1E-7	10	175	1E-7
f_{17}	0	1	1E-7	0	3	1E-7	f_{18}	0	1	1E-7	0	3	1E-7
f_{19}	1150	3319	1	8	339	1E-7	f_{20}	15772	73030	0.1	0	105	1E-7
f_{21}	0	28	$1 \mathrm{E}-7$	0	13	1E-7	f_{22}	1	123	1E-7	1	101	1E-7
f_{23}	3071	6340	10.0	3187	43862	1E-7	f_{24}	13362	30544	1	254	3757	1E-7
f_{25}	379	777	1	7011	77237	1E-7	f_{26}	0	1	1E-7	0	3	1E-7
f_{27}	3656	7312	10.0	20093	70984	1E-2	f_{28}	373	776	1	7011	72631	$1 \mathrm{E}-7$
f_{29}	15966	32320	1	17992	65801	1E-3	f_{30}	0	2	$1 \mathrm{E}-7$	0	1	1E-7
f_{31}	8	131	$1 \mathrm{E}-7$	7	117	$1 \mathrm{E}-7$	f_{32}	6	91	$1 \mathrm{E}-7$	6	109	$1 \mathrm{E}-7$

Table: Comparison between the interval and the interval union Newton methods. The number of solutions obtained with each method is given in Sol, the number of function evaluations in FunEv and the final tolerance is given in column Wid.

Interval unions

on rigorous
optimization

Tiago

Montanher,
Ferenc
Domes,
Hermann
Schichl,
Arnold
Neumaier

Motivation
Interval unions
Interval union linear systems

Interval union Newton method

Thank You for your attention!

If you have question about interval unions please contact me during SWIM or send me an e-mail to: demoraismt79@univie.ac.at

This research was founded by the grant CNPQ-205557/2014-7 of the Brazilian council of research.

