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Introduction

Context: CIPEGE1

CIPEGE goal
Improve the employability of university students in Earth Sciences.

The CIPEGE tool
A decision making tool to satisfy qualitatively (level of study) and quantitavely
(number of graduated) the labor market.

1International prospective employment center in Earth sciences and environment (Centre
international de prospective pour l’emploi en géosciences et en environnement)
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Introduction

Context

Discrete time nonlinear system:{
x(k + 1) = f (x(k), u(k)), x(0) = x0
y(k) = h(x(k))

avec
x(k) ∈ Rn the state;
y(k) ∈ Rp the output;
u(k) ∈ Rm the input (control) ;
x0 the initial condition ;
f : Rn × Rm → Rn and h : Rn → Rp are two analytic functions.

Objective
Determine the input u(k) to track the reference trajectory yref(k) of the output
y(k) over a given prediction horizon.
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Introduction

Uncertain trajectory tracking
We consider uncertain trajectory

yref(k) ∈ [yref(k)]

trajectory interval

time

yref
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Introduction

Issue

Goal
Characterize the set of admissible controls at each time k such that the ouput value
remains in reference trajectory intervals.

U∗(k) = {u(k)|h(f (x(k), u(k))) ∈ [yref(k + 1)]}

Computing such set is generally intractable.

⇒ Computation of an inner approximation of the solution set.
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Existing Approaches

“Global numerical approach to nonlinear discrete-time
control”, IEEE Trans. on Automatic Control [Jaulin,
Walter (1997)]
The result is a subpaving where all boxes belong to the characterized image set.

U1..` = {(u(1), ..., u(`))|∀i ∈ [1, `] , f (x(i), u(i)) ∈ [yref(i + 1)]}

with y(k) = x(k).

Drawbacks
Computation time : time complexity of the branch & Prune algorithm is in
O(em×`) with m the dimension of u and ` the prediction horizon.
Precision : The precision is a user defined parameter according the stopping
criterion:

minimum size of the considered intervals;
allocated time for computation.

Restriction : the reference trajectory is defined over the entire (whole) state
vector (y(k) = x(k)).
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Existing Approaches

“Set computation for nonlinear control”, Reliable
Computing [Jaulin, Ratschan et Hardouin (2004)]

The result is a validated sequence of controls on a prediction horizon ` :

(ũ(1), ..., ũ(`)) ∈ U1..` = {(u(1), ..., u(`))|∀i ∈ [1, `] , f (x(i), u(i)) ∈ [yref(i + 1)]}

with y(k) = x(k).

Drawbacks
Computation time : complexity is reduced since at each time i the control is
fixed;
Precision : we only get one sequence of controls;
Restriction : the reference trajectory is defined over the entire (whole) state
vector (y(k) = x(k)).
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Contribution

Objectives

1 Restriction : the trajectory can be on a part of the components of the state
vector;

2 Computation time and precision : enhance time computation according to
the precision.

Proposed method
Use of the flatness concept for dynamic systems.
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Contribution

Flatness (Fliess et al.)
Definition of x and u in function of a set of fundamental variables of the system:
the flat output.

{
x(k + 1) = f (x(k), u(k))
y(k) = h(x(k)).

This system is flat if there exist for a certain integer M, a function µ of x(k) and
u(k) such that

Fk = µ(x(k), u(k), . . . , u(k + M)).

Fk is called the flat output and verify the following relations for all k and for all
J = n − 1 :

x(k) = ψ(Fk ,Fk+1, . . . ,Fk+J );
y(k) = h ◦ ψ(Fk ,Fk+1, . . . ,Fk+J );
u(k) = ϕ(Fk ,Fk+1, . . . ,Fk+J+1).
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Contribution

Computation of the set of admissible control for a flat
system
Flatness gives

u(k) = ϕ(Fk ,Fk+1, . . . ,Fk+J+1)
If we consider that the reference trajectory gives the appropriate values for the flat
ouput, The set to characterize at each time k is

U∗(k) = {ϕ(Fk ,Fk+1, . . . ,Fk+J+1)|Fk ∈ [yref(k)]∀k}

This corresponds to the computation of the set

{F(x)|x ∈ [x ]}.

Two distinctive cases
Computation of an inner approximation of the set

u ∈ R (SISO) : generalized affine forms ;
u ∈ Rm, m > 1 (MIMO) : Branch & Prune algorithm.
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Contribution

SISO case
To define a generalized affine form, one need to:

compute [∆i ], an outer approximation of the Jacobian of f over a box;
compute f ε(t1, . . . , tn) for a given (t1, . . . , tn) ⇒ corresponding to the center
by taking t = 0.

Generalized affine set[1]
A generalized affine set of a function is a triplet (Z , c, J) with

Z ∈M(n + m + 1, p) a vector of affine forms;
c ∈ Rp a vector corresponding to the centre;
J ∈ (M(n, p))n a matrix of affine forms.

Combining affine arithmetics and Kaucher arithmetics. The generalized affine forms
allow to produce an interval [y ] ⊆ {f (x)|x ∈ [x ]}.

E. Goubault, O. Mullier, S. Putot, and M. Kieffer.
Inner approximated reachability analysis.
In Hybrid Systems: Computation and Control, pages 163–172, New York, NY,
USA, 2014. ACM.
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Contribution

MIMO case

Employed method
Extension of the results from Jaulin-Goldsztejn to the case f : Rn → Rm;
Computation of a subpaving of the set {f (x)|x ∈ [x ]};
Branch & Prune algorithm + sufficient condition for a box [y ] to belong to
{f (x)|x ∈ [x ]}.
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SISO example

SISO Example

{
x1(k + 1) = x1(k)x2(k)
x2(k + 1) = x2(k) + u(k)

with x0 = (1 1)T .
We have computed the flat output Fk and the expression of u(k) according to the
flat output:

u(k) = Fk+2
Fk+1

− Fk+1
Fk

and we know the reference trajectory

(yref(k))k=1..3 = (F1,F2,F3)
= (1, [1, 2] , [5, 7]).

We apply the both presented methods to compute u(0) and u(1).
Method 1 : generalized affine forms.
Method 2 : intervals.
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SISO example

Method 1 (Generalized affine forms)

(F1,F2,F3) = (1, [1, 2] , [5, 7])

u(k) = Fk+2
Fk+1

− Fk+1
Fk

We compute the affine forms corresponding to Fi :

F̂0 = 1
F̂1 = 1

F̂2 = 3
2 + 1

2ε2

F̂3 = 6 + ε3
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SISO example

Method 1 (Generalized affine forms)

The computation gives:
for u(0)

ǔ0 =


û0 = 1

2 + 1
2ε2

c = 1
2

[J ] =
(
0 1

2 0
)

Ĵ =
(
0 1

2 0
)
 .

for u(1)

ǔ1 =


û1 = 3− 5

4ε2 + 3
4ε3 + η

c = 5
2

[J ] =
(
0
[
−4,− 9

8
] [ 1

2 , 1
])

Ĵ =
(
(0) (− 23

8 + 0.28125ε2 − 0.395833ε3 + 1.61458η)
(0.75− 0.125ε2 + 0.125η))

 .

Olivier Mullier, Estelle Courtial (ENSTA Paristech) Interval trajectory tracking with flatness SWIM 2016 19 / 23



SISO example

Method 2 (bisection and intervals)

The bisection method requires to know the expression of the function and its
derivatives:

u(k) = Fk+2
Fk+1

− Fk+1
Fk

Ju =
(

Fk+1
F 2

k
−Fk+2

F 2
k+1
− 1

Fk
1

Fk+1

)
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SISO example

Results : discussion

Stopping criterion for method 2 and (Jaulin et al.) : minimum size for an interval
to be treated is 0.1.

Method Method 1 Method 2 (Jaulin et al.)
Results [0, 1] [0, 1] [0, 0.9765625]

Computation time 1.37672× 10−6s 0.0002s 0.37935s2

Table: Results for u(0).

Method Method 1 Method 2 (Jaulin et al.)
Results [0.875, 4.125] [0.59375, 5.6875] [0.8789, 5.2734]

Computation time 2.86311× 10−6s 0.013656s 0.37935s1

Table: Results for u(1).

2time to compute u(1) and u(2) together
Olivier Mullier, Estelle Courtial (ENSTA Paristech) Interval trajectory tracking with flatness SWIM 2016 21 / 23



Conclusion

Outline

1 Existing Approaches

2 Contribution

3 SISO example

4 Conclusion

Olivier Mullier, Estelle Courtial (ENSTA Paristech) Interval trajectory tracking with flatness SWIM 2016 22 / 23



Conclusion

Contribution
New method to characterize the set of admissible controls

enhances the result according to the existing approach in term of precision and
computation time;
combination of set-membership methods and flatness of dynamic systems;
handle a larger class of problems (y(k) 6= x(k)).

Perspectives
Extend the results to the class of continuous-time systems:

control u is a function of the flat output and its successive time derivatives;
use of validated integration methods.
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