Improving a Constraint Programming Approach for Parameter Estimation

Bertrand Neveu, Martin de la Gorce, Gilles Trombettoni

LIGM Ecole des Ponts Paris Tech, France
LIRMM Université de Montpellier, France

SWIM, June 2016, Lyon
Plan

1. Parameter Estimation
2. Contributions
3. Experiments
Plan

1. Parameter Estimation
2. Contributions
3. Experiments
Consider a model defined by n parameters.
Input: m observations
Output: “all” the models, i.e. the parameter values that fit at least Q observations, within a given tolerance τ
more precisely, one model fitting each maximal set of observations of cardinality $\geq Q$

Application to computer vision: shape detection
- 2D: find the lines, the circles...
- 3D: find the planes, the spheres, the cylinders...
Didactic example: finding lines in an image

- \(m \) 2D points \((x_i, y_i)\)

- Finding the lines defined by \((a, b)\) with the equation \(y = ax + b\)

- such that each line contains at least \(Q\) points \((x_i, y_i)\) (inliers), with a given tolerance \(\tau\):
 \[|y_i - ax_i - b| < \tau\]

- Only the lines with maximal sets of inliers (with at least \(Q\) points) are searched for.
Didactic example: a numeric CSP

The problem can be represented as a numeric CSP with continuous variables handled with intervals

- **variables a, b**
- **domains** \([-1000, 1000], [-10, 10]\)
- **constraints**: one constraint at least \((Q, |y_i - a x_i - b|, i=1 .. m)\)
- **solutions**: small boxes
Didactic example: finding lines in an image

The data: the points in the image
Didactic example: finding lines in an image

The parameter space \((a, b)\) for the lines
State of the art for parameter estimation: RANSAC

RANdom SAmple Consensus: \textit{randomized} algorithm
Version for finding \textit{all the models} (the lines)

1. Choose randomly 2 points, compute the corresponding line and compute a \textit{consensus} for that line, i.e. checks that Q points belongs to the line (within the tolerance τ)

["Improve" the line with a better consensus (checking more points)]

2. If no line is found after some iterations: stop

3. Otherwise, store the solution.

4. Remove all the corresponding points
 Go to 1 to find another line

\textbf{No guarantee} to find \textit{all} lines (all maximal sets of inliers). Different runs give different sets of lines.
Plan

1. Parameter Estimation
2. Contributions
3. Experiments
Contributions

- **Generic contributions**
 - Algorithm based on a branch and prune scheme with valid and possible inliers
 - Q intersection in a new direction

- **Specific contributions**
 - A new efficient parameterization for lines and planes
 - A specific bisection (branching) heuristics
QInterEstim: Branch and Prune algorithm

A complete Branch and Prune algorithm in the continuous parameter space QInterEstim

- based on Luc Jaulin’s interval parameter estimation tool
- using the Q-intersection
- with new features and improvements to make it efficient
QInterEstim algorithm

The continuous parameter space in bounded by a box in n dimensions.

Exhaustive tree search performed in that space.

The current box has:
- **possible inliers**: observations not discarded
- **valid inliers**: inliers guaranteeing a model

Pruning: Contraction and Q intersection reduce the set of possible inliers and discard the boxes with less than Q possible inliers

Stopping condition: (possible inliers \neq valid inliers) or precision reached

Result: boxes containing a model with at least Q valid inliers, and small boxes possibly containing a model.

Postprocessing: boxes with maximal set of inliers.
QInterEstim Algorithm

Exhaustive parameter estimation algorithm based on Q-intersection:

```
Algorithm QinterEstim (box, observations, Q, ε_{sol}, τ)

solutions ← ∅; node ← new Node; node.box ← box
node.possibleInliers ← observations; node.validInliers ← ∅
nodeStack ← {node}

while nodeStack ≠ ∅ do
    node ← pop (nodeStack); box ← node.box
    contractAndQinter (box, τ, Q, node.possibleInliers)
    if box ≠ ∅ then
        validateInliers (box, τ, node.possibleInliers, node.validInliers)
        if width(box) < ε_{sol} or node.validInliers = node.possibleInliers
            then
                solutions ← solutions ∪ {node}
        else
            bisect (box, box₁, box₂) /* split the box */
            push (nodeStack, ”box₁”); push (nodeStack, ”box₂”)

return solutions
```

Definition

Let S be a set of boxes. The Q-intersection of S is the box of **smallest perimeter** that encloses the set of points of \mathbb{R}^n belonging to **at least Q boxes**.
Q-intersection: principle

Illustration of Q-intersection for $Q = 4$, $n = 2$
Q-intersection: the Q-projection approximate algorithm

4 boxes in the current parameter space, one for each possible observation.
Q-intersection: Algorithms

- an exact algorithm (Carbonnel et al. AAAI 2014) in $O(m^n)$
- an approximate algorithm (Jaulin et al.) in $O(n \times m \times \log(m))$ that projects the boxes on every dimension.
Q-intersection: the Q-projection algorithm

Projection on every parameter
Resulting box: 2-intersection of the 4 input boxes
Q-Intersection in the line example

The boxes for each point in the parameter space
Current box $a = [-1, 1], b = [-1, 1]$
Q-Intersection in the line example

Q-projection on the a parameter with $Q = 5$
Q-Intersection in the line example

Contraction due to 5-projection on the a parameter
Q-Intersection in the line example

After the contraction due to 5-projection on a
Contraction due to 5-projection on the b parameter
Q-Intersection in a new projection direction

Projecting parallelograms A_i along the mean normal direction
The new projection direction in the line example

Q-projection on the mean direction
The new projection direction in the line example

Q-projection on the mean direction m in the (a, m) referential
The red points can be discarded
Specific improvements

Line and plane parameterization

- Classical model: \(ax + by + cz + d = 0 \)
 with \(a^2 + b^2 + c^2 = 1 \)
- Our linear model: \(ax + by + cz + d = 0 \)
 with \(a \pm b \pm c = 1 \) (4 cases to study)

Branching heuristics

1. Round robin on \(a, b, c \)
2. When \([a], [b], [c] \) are small, split \([d]\)
Plan

1. Parameter Estimation
2. Contributions
3. Experiments
Experiments: benchmark

- Plane detection: artificial test cases P_1 to P_9
- Plane detection in a 3D point cloud in an outdoor scene view
 points were labeled for a building: H_{40}
- Circle detection: a buoy in 2D images C_1 and C_2

Table: Characteristics of the artificial plane detection test cases

<table>
<thead>
<tr>
<th>Test case</th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>P_4</th>
<th>P_5</th>
<th>P_6</th>
<th>P_7</th>
<th>P_8</th>
<th>P_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>points</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>planes</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>inlier rate</td>
<td>10%</td>
<td>5%</td>
<td>4%</td>
<td>2%</td>
<td>1.5%</td>
<td>1%</td>
<td>2%</td>
<td>1.5%</td>
<td>1%</td>
</tr>
</tbody>
</table>
Experiments: results

Each improvement is added to the solving method

0: initial algorithm: basic implementation of Jaulin’s Q-intersection based algorithm (without incremental maintain of possible inliers and without validations)

1: generic QinterEstim algorithm

2: update of possible observations after Q-projection

3: use of dedicated forward backward algorithm

4: Q-projection on the new direction

5: new bisection strategy

6: efficient plane parameterization
Experiments: results

The graph shows the time (in seconds) taken to add features against the number of features added. Different markers and line styles represent different experiment conditions or datasets. The x-axis represents the number of features added, while the y-axis represents time in seconds.
Future work

- **Automatic selection** of the parameters Q and τ.

- **Optimization**: find the solution with the maximum number of inliers within a given tolerance.

- **Postprocessing** of the solutions: discriminate between the solutions with the maximal inliers sets.

- More experiments on **real scenes** for shape detection.

- Other problems in computer vision: computation of the **fundamental matrix**, **essential matrix** between two images.