Improving a Constraint Programming Approach for Parameter Estimation

Bertrand Neveu, Martin de la Gorce, Gilles Trombettoni

LIGM Ecole des Ponts Paris Tech, France LIRMM Université de Montpellier, France

SWIM, June 2016, Lyon

Plan

- Parameter Estimation
- 2 Contributions
- Second Second

Plan

- Parameter Estimation
- 2 Contributions
- 3 Experiments

Parameter Estimation

- Consider a model defined by n parameters.
- Input: m observations
- Output: "all" the models, i.e. the parameter values that fit at least Q observations, within a given tolerance τ
- more precisely, one model fitting each maximal set of observations of cardinality >= Q

Application to computer vision: shape detection

- 2D: find the lines, the circles...
- 3D: find the planes, the spheres, the cylinders...

Didactic example: finding lines in an image

- *m* 2D points (*x_i*, *y_i*)
- Finding the lines defined by (a,b) with the equation
 y = a x + b
- such that each line contains at least Q points (x_i, y_i) (inliers), with a given tolerance τ : $|y_i \mathbf{a} x_i \mathbf{b}| < \tau$
- Only the lines with maximal sets of inliers (with at least *Q* points) are searched for.

Didactic example: a numeric CSP

The problem can be represented as a numeric CSP with continuous variables handled with intervals

- variables a, b
- domains [-1000, 1000], [-10, 10]
- constraints: one constraint at least (Q, |y_i - a x_i - b|, i=1 .. m)
- solutions : small boxes

Didactic example: finding lines in an image

The data: the points in the image

Didactic example: finding lines in an image

The parameter space (a, b) for the lines

State of the art for parameter estimation: RANSAC

RANdom SAmple Consensus: randomized algorithm Version for finding all the models (the lines)

- Choose randomly 2 points, compute the corresponding line and compute a consensus for that line, i.e. checks that Q points belongs to the line (within the tolerance τ)
 ["Improve" the line with a better consensus (checking more points)]
- 2 If no line is found after some iterations: stop
- Otherwise, store the solution.
- Remove all the corresponding points Go to 1 to find another line

No guarantee to find all lines (all maximal sets of inliers). Different runs give different sets of lines.

Plan

- Parameter Estimation
- 2 Contributions
- 3 Experiments

Contributions

- Generic contributions
 - Algorithm based on a branch and prune scheme with valid and possible inliers
 - Q intersection in a new direction

- Specific contributions
 - A new efficient parameterization for lines and planes
 - A specific bisection (branching) heuristics

QInterEstim: Branch and Prune algorithm

A complete Branch and Prune algorithm in the continuous parameter space **QInterEstim**

- based on Luc Jaulin's interval parameter estimation tool
- using the Q-intersection
- with new features and improvements to make it efficient

QInterEstim algorithm

The continuous parameter space in bounded by a box in *n* dimensions.

Exhaustive tree search performed in that space.

The current box has:

- possible inliers: observations not discarded
- valid inliers: inliers guaranteeing a model

Pruning: Contraction and *Q* intersection reduce the set of possible inliers and discard the boxes with less than *Q* possible inliers

Stopping condition: (possible inliers = valid inliers) or precision reached

Result: boxes containing a model with at least Q valid inliers, and small boxes possibly containing a model.

Postprocessing: boxes with maximal set of inliers.

QInterEstim Algorithm

Exhaustive parameter estimation algorithm based on Q-intersection :

```
Algorithm QinterEstim (box, observations, Q, \epsilon_{sol}, \tau)
     solutions \leftarrow \emptyset; node \leftarrow new Node; node.box \leftarrow box
     node.possibleInliers \leftarrow observations; node.validInliers \leftarrow \emptyset
     nodeStack ← {node}
     while nodeStack \neq \emptyset do
          node \leftarrow pop (nodeStack) ; box \leftarrow node.box
          contractAndQinter (box, \tau, Q, node.possibleInliers)
          if box \neq \emptyset then
               validateInliers (box, \tau, node.possibleInliers, node.validInliers)
               if width(box) < \epsilon_{sol} or node.validInliers = node.possibleInliers
               then
                     solutions \leftarrow solutions \cup \{node\}
               else
                     bisect (box, box<sub>1</sub>, box<sub>2</sub>) /* split the box */
                     push (nodeStack, "box<sub>1</sub>"); push (nodeStack, "box<sub>2</sub>")
```

Q-intersection: principle

Definition

Let S be a set of boxes.

The Q-intersection of S is the box of smallest perimeter that encloses the set of points of \mathbb{R}^n belonging to at least Q boxes.

Q-intersection: principle

Illustration of *Q*-intersection for Q = 4, n = 2

Q-intersection: the Q-projection approximate algorithm

4 boxes in the current parameter space, one for each possible observation.

Q-intersection: Algorithms

- an exact algorithm (Carbonnel et al. AAAI 2014) in O(mⁿ)
- an approximate algorithm (Jaulin et al) in
 O(n × m × log(m)) that projects the boxes on every
 dimension.

Q-intersection: the Q-projection algorithm

Projection on every parameter Resulting box: 2-intersection of the 4 input boxes

The boxes for each point in the parameter space Current box a = [-1, 1], b = [-1, 1]

Q-projection on the a parameter with Q = 5

Contraction due to 5-projection on the a parameter

After the contraction due to 5-projection on a

Contraction due to 5-projection on the *b* parameter

Q-Intersection in a new projection direction

Projecting parallelograms A_i along the mean normal direction

The new projection direction in the line example

Q-projection on the mean direction

The new projection direction in the line example

Q-projection on the mean direction m in the (a, m) referential The red points can be discarded

Specific improvements

Line and plane parameterization

- Classical model: $\mathbf{a} x + \mathbf{b} y + \mathbf{c} z + \mathbf{d} = 0$ with $\mathbf{a}^2 + \mathbf{b}^2 + \mathbf{c}^2 = 1$
- Our linear model: $\mathbf{a} x + \mathbf{b} y + \mathbf{c} z + \mathbf{d} = 0$ with $\mathbf{a} \pm \mathbf{b} \pm \mathbf{c} = 1$ (4 cases to study)

Branching heuristics

- O Round robin on a, b, c
- When [a], [b], [c] are small, split [d]

Plan

- Parameter Estimation
- 2 Contributions
- 3 Experiments

Experiments: benchmark

- Plane detection: artificial test cases P₁ to P₉
- Plane detection in a 3D point cloud in a outdoor scene view points were labeled for a building: H₄₀
- Circle detection : a buoy in 2D images C_1 and C_2

Table: Characteristics of the artificial plane detection test cases

Test case	P ₁	P ₂	P_3	P ₄	<i>P</i> ₅	P ₆	<i>P</i> ₇	P ₈	P ₉
points	1000	1000	1000	1000	1000	1000	4000	4000	4000
planes	4	4	4	25	25	25	25	25	25
inlier rate	10%	5 %	4 %	2 %	1.5%	1%	2%	1.5%	1%

Experiments: results

Each improvement is added to the solving method

- 0: initial algorithm: basic implementation of Jaulin's Q-intersection based algorithm (without incremental maintain of possible inliers and without validations)
- 1: generic QinterEstim algorithm
- 2: update of possible observations after Q-projection
- 3: use of dedicated forward backward algorithm
- 4: Q-projection on the new direction
- 5: new bisection strategy
- 6: efficient plane parameterization

Experiments: results

Future work

- Automatic selection of the parameters Q and τ .
- Optimization: find the solution with the maximum number of inliers within a given tolerance.
- Postprocessing of the solutions: discriminate between the solutions with the maximal inliers sets.
- More experiments on real scenes for shape detection.
- Other problems in computer vision: computation of the fundamental matrix, essential matrix between two images.