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Parameter Estimation

e Consider a model defined by n parameters.
@ Input: m observations

@ Output : “all” the models, i.e. the parameter values
that fit at least , Within a given
tolerance 7

@ more precisely, one model fitting each maximal set of
observations of cardinality

Application to computer vision:

e 2D: find the lines, the circles...
e 3D: find the planes, the spheres, the cylinders...
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Didactic example: finding lines in an image

e m 2D points (x;, yi)

e Finding the lines defined by (a,b) with the equation
y=ax+b

@ such that each line contains at least Q points (x;, y;)
( ), with a given tolerance 7 :
lyi—ax;—b| <7

@ Only the lines with maximal sets of inliers (with at
least Q points) are searched for.
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Didactic example: a numeric CSP

The problem can be represented as a numeric CSP with
continuous variables handled with intervals

e variables a,b

e domains [—1000, 1000], [—10, 10]

@ constraints : one constraint
atleast (Q, |y, —ax; —b|,i=1.. m)

@ solutions : small boxes
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Didactic example: finding lines in an image
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Didactic example: finding lines in an image
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State of the art for parameter estimation : RANSAC

RANdom SAmple Consensus: algorithm
Version for finding (the lines)

@ Choose randomly 2 points, compute the corresponding line and

compute a for that line, i.e. checks that Q points
belongs to the line (within the tolerance 1)

[ "Improve” the line with a better consensus (checking more
points) ]

@ If no line is found after some iterations: stop
@ Otherwise, store the solution.
© Remove all the corresponding points

Go to 1 to find another line

to find all lines (all maximal sets of inliers).
Different runs give different sets of lines.
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Contributions

Contributions

@ Generic contributions

e Algorithm based on a branch and prune scheme with
and inliers
e Qintersectionin a

@ Specific contributions

e A new efficient for lines and planes
e A specific (branching) heuristics
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Contributions

QlInterEstim: Branch and Prune algorithm

A complete Branch and Prune algorithm in the continuous
parameter space

@ based on Luc Jaulin’s interval parameter estimation
tool
@ using the Q-intersection

e with new features and improvements to make it
efficient
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Contributions

QlnterEstim algorithm

The continuous parameter space in bounded by a box in n
dimensions.

Exhaustive tree search performed in that space.

The current box has :
) : observations not discarded
° : inliers guaranteeing a model

: Contraction and Q intersection reduce the set of possible
inliers and discard the boxes with less than Q possible inliers

: (possible inliers = valid inliers) or precision
reached

: boxes containing a model with at least Q valid inliers, and
small boxes possibly containing a model.

: boxes with maximal set of inliers.
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QInterEstim Algorithm

Exhaustive parameter estimation algorithm based on Q-intersection :

Algorithm QinterEstim (box, observations, Q, eso, T)
solutions < 0 ; node +— new Node ; node.box <+ box
node.possiblelnliers <+ observations ; node.validlnliers + (
nodeStack + {node}

while nodeStack +# () do

node + pop (nodeStack) ; box < node.box
contractAndQinter (box, 7, Q, )
if box # () then
validateInliers (box, T, node.possibleinliers, )
if width(box) < eso OF
then
‘ solutions < solutions U {node}
else
bisect (box, boxi, boxz) /* split the box */
L push (nodeStack, "boxy”) ; push (nodeStack, "boxz”)

L return solutions
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Q-intersection: principle

Definition

Let S be a set of boxes.

The Q-intersection of S is the box of

that encloses the set of points of R" belonging to

|:|_
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Q-intersection: principle

lllustration of Q-intersection for Q =4, n=2
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Q-intersection: the Q-projection approximate algorithm

4 boxes in the current parameter space,
one for each possible observation.
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Q-intersection: Algorithms

@ an exact algorithm (Carbonnel et al. AAAI 2014) in
o(m™)

@ an approximate algorithm (Jaulin et al ) in
O(n x m x log(m) that projects the boxes on every
dimension.
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Q-intersection: the Q-projection algorithm

Projection on every parameter
Resulting box: 2-intersection of the 4 input boxes
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Q-Intersection in the line example
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The boxes for each point in the parameter space
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Q-Intersection in the line example

Q-projection on the a parameter with Q = 5
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Q-Intersection in the line example
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Q-Intersection in the line example
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Q- Intersection in the line example
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Q-Intersection in a new projection direction

Projecting parallelograms A; along the mean normal
direction
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The new projection direction in the line example

=1.0 -0.5 0.0 0.5 1.0

Q-projection on the mean direction

26/33



Contributions

The new projection direction in the line example
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Q-projection on the mean direction min the (a, m) referential
The red points can be discarded
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Specific improvements

Line and plane parameterization
o Classical model: ax +by+cz+d=0
with @2 + b? + ¢? = 1
@ Ourlinear model: ax +by+cz+d=0
witha+b+c=1 (4 cases to study)

Branching heuristics

@ Round robinona, b, ¢
@ When [a], [b], [c] are small, split [d]
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Experiments

Experiments : benchmark

@ Plane detection: artificial test cases P; to Py

@ Plane detection in a 3D point cloud in a outdoor
scene view

points were labeled for a building : Hao
e Circle detection : a buoy in 2D images C; and C,

Table : Characteristics of the artificial plane detection test cases

Test case P1 P2 P3 P4 P5 P6 P7 Pg Pg
points 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 4000 | 4000 | 4000
planes 4 4 4 25 25 25 25 25 25
inlier rate 10% 5% 4 % 2% | 1.5% 1% 2% | 1.5% 1%
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Experiments: results

Each improvement is added to the solving method

e O: : basic implementation of Jaulin’s
Q-intersection based algorithm (without incremental
maintain of possible inliers and without validations)

e 1: generic algorithm
° 2: of possible observations after Q-projection
e 3: use of forward backward algorithm

@ 4: Q-projection on the
@ 5: new bisection strategy
e 6: efficient plane parameterization
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Experiments: results
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Experiments

Future work

° of the parameters Q and 7.

° : find the solution with the
number of inliers within a given tolerance.

° of the solutions: discriminate
between the solutions with the maximal inliers sets.

@ More experiments on for shape
detection.

@ Other problems in computer vision: computation of
the , between
two images.
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