
Set-based methods in programs and systems verification

Sylvie Putot and Eric Goubault

Cosynus team, LIX, Ecole Polytechnique

SWIM 2016, ENS Lyon

Automatic validation of numerical programs and systems

Validation of programs (discrete systems)

f l o a t xn , xnp1 , r e s i d u , Input , Output ,
s h o u l d b e z e r o ; i n t i =0;

f l o a t eps =0.00000001;
I n p u t=FBETWEEN(1 6 . 0 , 1 6 . 0 0 2) ;
xn =1.0/ I n p u t ; xnp1=xn ;
r e s i d u =2.0∗ eps∗(xn+xnp1) / (xn+xnp1) ;
w h i l e (f a b s (r e s i d u) > eps) {

xnp1=xn∗(1.875+ I n p u t∗xn∗xn
∗(−1.25+0.375∗ I n p u t∗xn∗xn)) ;

r e s i d u =2.0∗(xnp1−xn) / (xn+xnp1) ;
xn=xnp1 ;
i ++;

}
Output =1.0 / xnp1 ;
s h o u l d b e z e r o=Output−s q r t (I n p u t) ;

Does it crash? can we bound program
variables? does it compute the square
root? at what precision?

For embedded systems, work on control
code since the 2000s (FLUCTUAT,
Astrée etc.) in particular using abstract
interpretation (Cousot & Cousot
1977-) mostly on invariant properties

Connections to set-based methods

Validation of hybrid systems (discrete and continuous systems)

For embedded systems control, many properties only provable on
closed-loop systems (with the physical environment)

Even more connections to set-based methods (Taylor models as in e.g.
Berz & Makino∼1985)

Connections with model-checking (Clarke, Emerson, Queille, Sifakis
1980) : generalisation of reachability and invariance properties (if some
value is bounded for some time, can we reach some prescribed state?)

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Contents of the talk

Quick guided tour on our work on abstract interpretation of numerical programs

Set-based methods and Abstract Interpretation, for validation of programs
(here, just in real numbers!)

An introduction to abstract interpretation
Zonotopes for reachability, invariant synthesis, and functional proofs of
algorithms

Some work in progress on abstract interpretation of hybrid systems

Extension of zonotopic methods: inner- and outer- approximations of the
set of solutions of uncertain ODEs

Use for temporal verification, LTL, CTL and (abstract) model-checking

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

The overall context, in the last 15 years or so

Computation of sets of reachable values of variables at any program points
(FLUCTUAT)

Need to bound real and finite precision values of variables, and the
difference between them, decomposed on the provenance of these errors

Accurate outer-approximation with affine forms

Implemented in the FLUCTUAT analyzer for C programs

But how pessimistic are the results?

Joint use of inner- and outer-approximations to characterize the quality of
analysis results

Inner-approximation: sets of values of the outputs, that are sure to be
reached for some inputs in the specified ranges.
Use of affine forms with generalized intervals as coefficients

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Static analysis by abstract interpretation (Cousot 77)

Basics

Choose properties of interest (for instance values of variables)

Outer-approximate them in an abstract lattice (partially ordered structure
with least upper bounds/greatest lower bounds) whose elements are
particular “tractable” sets

Interpret computations in this lattice

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Example in intervals

Abstract semantics of programs in intervals (for invariant generation)

Program seen as a discrete dynamical system X n+1 = F (X n)

based on a notion of control points in the program
equations describe how values of variables are collected at each control
point, for all possible executions (collecting semantics)

void main() {
int x=[-100,50]; [1]
while [2] (x < 100) {
[3] x=x+1; [4]
} [5]
}



x0 = >
x1 = [−100, 50]
x2 = x1 ∪ x4

x3 =]−∞, 99] ∩ x2

x4 = x3 + [1, 1]
x5 = [100,+∞[∩x2

Invariants generation = least fixed point computation

The sets of possible values of variables at control points are invariants of
F , computed as the least fixpoint of the system

F monotonic on a complete lattice, least fixpoint exists

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Invariants

Invariants and validation

Invariants allow to conclude about the safety (for instance absence of
run-time errors)

E.g. we will find for :
int x=[-100,50]; [1]
while [2] (x < 100) { [3] x=x+1; [4] } [5]
x3 = [−100, 99] and the program will not run into an overflow

Computation of invariants as the least fixpoint X = F (X)

Limit of the Kleene iteration (Jacobi/Gauss-Seidel like method)
X 0 = ⊥, X 1 = F (X 0), . . ., X k+1 = X k ∪ F (X k)

with convergence acceleration to terminate in finite time

An alternative: policy iteration (Newton-like method)

The least fixpoint is the best inductive invariant (F (X) ⊆ X) ...

... but invariants are not always inductive (in a given abstract domain)

Search for a disjunction which is inductive: algorithm inspired from
constraint programming (Mine and al. 2015 on boxes, B. Kabi’s talk)

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Affine Arithmetic (Comba & Stolfi 93) for real-numbers abstraction

Affine forms

Affine form for variable x:

x̂ = x0 + x1ε1 + . . .+ xnεn, xi ∈ R

where the εi are symbolic variables (noise symbols), with value in [−1, 1].

Sharing εi between variables expresses implicit dependency

Interval concretization of affine form x̂ :[
x0 −

n∑
i=0

|xi |, x0 +
n∑

i=0

|xi |
]

= x0 + [−‖(xi)‖1, ‖(xi)‖1]

Geometric concretization as zonotopes (center symmetric polytopes)

x̂ = 20 −4ε1 +2ε3 +3ε4

ŷ = 10 −2ε1 +ε2 −ε4

x

y

10 15 20 25 30
5

10

15

Huge litterature - (dual) generator representation of a polytope!

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Affine arithmetic

Basic arithmetic operations

Assignment x := [a, b] introduces a noise symbol:

x̂ =
(a + b)

2
+

(b − a)

2
εi .

Addition/subtraction are exact:

x̂ + ŷ = (x0 + y0) + (x1 + y1)ε1 + . . .+ (xn + yn)εn

Non linear operations : approximate linear form, new noise term bounding
the approximation error

x̂ × ŷ = x0y0 +
n∑

i=0

(x0yi + xiy0)εi +

 ∑
1≤i 6=j≤n

| xiyj |

 εn+1

(better formulas including SDP computations of the new term)

Close to Taylor models of order 1: low time complexity! and easy to
implement on a finite-precision machine

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Set-theoretic operations

Reminder!

Need to define an order relation and interpret set-theoretic operations such as
∪ and ∩ (or at least outer-approximations), as for e.g. :

x1 = [−100, 50]
x2 = x1 ∪ x4

x3 =]−∞, 99] ∩ x2

x4 = x3 + [1, 1]
x5 = [100,+∞[∩x2

Note

We are actually abstracting input-output relationships, not just the image
of functions (see Arxiv 2008 & 2009 & FMSD 2016)

This is the major difference with respect to classical work on zonotopes
(Comba & Stolfi, Girard etc.)

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

A simple example: functional interpretation

r e a l x = [0 , 1 0] ;
r e a l y = x∗x − x ;

x̂

ŷ

Abstraction of x : x = 5 + 5ε1

Abstraction of function x → y = x2 − x as

y = 32.5 + 50ε1 + 12.5η1

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

A simple example: functional interpretation

r e a l x = [0 , 1 0] ;
r e a l y = x∗x − x ;

x̂

ŷ

Abstraction of x : x = 5 + 5ε1

Abstraction of function x → y = x2 − x as

y = 32.5 + 50ε1 + 12.5η1

= −17.5 + 10x + 12.5η1

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Set operations on affine sets / zonotopes: meet

Test interpretation: intersection of zonotopes with guards are not zonotopes!

Interpreting tests

Translate the condition on noise symbols

Abstract domain for the noise symbols: intervals, octagons, etc.

Test interpretation is (interval) constraint propagation

Example

real x = [0,10]; real y = 2*x;
if (y >= 10) y = x;

Affine forms before tests: x = 5 + 5ε1, y = 10 + 10ε1

In the if branch: constraint ε1 ≥ 0

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Set operations on affine sets / zonotopes: meet

Test interpretation: intersection of zonotopes with guards are not zonotopes!

Interpreting tests

Translate the condition on noise symbols

Abstract domain for the noise symbols: intervals, octagons, etc.

Test interpretation is (interval) constraint propagation

When going to finite precision analysis

Constraints give condition on idealized (in reals) and machine (in
floating-point numbers) paths to be taken by an execution

Unstable test detection is a constraint satisfaction problem

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Join operator

(
x̂ = 3 + ε1 + 2ε2

û = 0 + ε1 + ε2

)
∪
(

ŷ = 1− 2ε1 + ε2

û = 0 + ε1 + ε2

)
=

(
x̂ ∪ ŷ = 2 + ε2 + 3η1

û = 0 + ε1 + ε2

)

x̂ , ŷ

û

Construction (low complexity!: O(n × p))

Keep “minimal common dependencies”

zi = argmin
xi∧yi≤r≤xi∨yi

|r |, ∀i ≥ 1

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Join operator

(
x̂ = 3 + ε1 + 2ε2

û = 0 + ε1 + ε2

)
∪
(

ŷ = 1− 2ε1 + ε2

û = 0 + ε1 + ε2

)
=

(
x̂ ∪ ŷ = 2 + ε2 + 3η1

û = 0 + ε1 + ε2

)

x̂∪ŷ

x̂ , ŷ

û

Construction (low complexity!: O(n × p))

Keep “minimal common dependencies”

zi = argmin
xi∧yi≤r≤xi∨yi

|r |, ∀i ≥ 1

For each dimension, concretization is the interval union of the
concretizations: γ(x̂ ∪ ŷ) = γ(x̂) ∪ γ(ŷ)

A more precise upper bound: NSAD 2012

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Convergence of fixpoint computation: from concrete to abstract

General result on recursive linear filters, pervasive in embedded programs:

xk+n+1 =
n∑

i=1

aixk+i +
n+1∑
j=1

bjek+j , el ∈ [m,M]

Concrete scheme has bounded outputs iff zeros of xn −
∑n−1

i=0 ai+1x
i have

modulus stricty lower than 1.

Then our Kleene iteration (with some initial unfolding p and uncyclic
unfolding q) converges towards a finite outer-approximation of the outputs

X̂i = X̂i−1 ∪ F q(Ei , . . . ,Ei−k , X̂i−1, . . . , X̂i−k)

in finite time
The abstract scheme is a perturbation (by the join operation) of the
concrete scheme
Proof uses: for each dimension γ(x̂ ∪ ŷ) = γ(x̂) ∪ γ(ŷ) and F q is
contracting “enough” for some q

Generalization to some recurrent polynomial
schemes

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Illustration: a simple order 2 filter

Sn+2 = 0.7En+2 − 1.3En+1 + 1.1En + 1.4Sn+1 − 0.7Sn

- after initial unfolding (10)+first cyclic unfolding (80) - first join
- after first join, perturbation of the original numerical scheme
- then second cyclic unfolding, contracting back: second join and post-fixpoint

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Illustration: a simple order 2 filter

Sn+2 = 0.7En+2 − 1.3En+1 + 1.1En + 1.4Sn+1 − 0.7Sn

Fixpoint (polyhedral outer-approximation of the ellipsoidal invariant) below:

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Fluctuat : also properties of finite precision arithmetic (here Householder)

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Inner-approximations?

Starting point

Assert the quality of abstractions by looking at inner and outer approx

Falsify properties

Provide lower/upper bounds for convergence of numerical schemes

Newton algorithm for a→ 1/a, stop when |xn+1 − xn| < 5.10−4

Outer approximation: stopping criterion always satisfied after 4 iter
(|x(4)− x(3)| ⊆ [−2.6 10−4, 2.6 10−4]).

Inner approximation: some inputs falsify criterion on first 3 iterations
([−7.7 10−4,−4.1 10−4] ⊆ x(3)− x(2)).

0 2 4 6 8 10
0.45

0.5

0.55

0.6

∗ first-order inner approx

−− outer approximation

iteration k

x(
k)

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

How to do this?

Inner approximation much more difficult than outer approximation (some
pointers)

Modal arithmetics (Kaucher 1973, Markov 1992, Goldsztejn 2005),
Goldsztejn and Jaulin 2006

Linear case for ODEs [Kurzhanski-Varaiya HSCC 2000, Althoff et al. CDC
2007, Kanade et al. CAV 2009]

Simulation-based local inner approximations [Nghiem et al. HSCC 2010]

Box bisections [Goldsztejn-Jaulin Reliable Computing 2010,
Mullier-Goubault-Kieffer-Putot RC 2013]

Parallelepipeds [Goldsztejn-Hayes SCAN 2006]

Order 0 generalized affine forms [Goubault-Putot SAS 2007], order 1
[Goubault-Kieffer-Mullier-Putot HSCC 2014]

Will be useful in the rest of the talk...

Check general temporal properties (TCTL in particular) on hybrid systems

By a combination of inner- and outer- approximations

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Generalized affine forms, modal intervals (SAS 2007, SWIM 2011 etc.)

Generalized intervals

General bounds K = {[a, b], a ∈ R, b ∈ R} (“improper” if a > b)

Kaucher arithmetic (only when no dependencies between arguments!)

All proper intervals : outer-approx (∀x ∈ [x]) (∃z ∈ [z]) (f (x) = z)
All improper intervals : inner-approx (∀z ∈ pro [z]) (∃x ∈ pro [x])(f (x) = z).

Remedy : Mean-value theorem (à la Goldsztejn 2005)+affine arithmetic

Let f : Rn → R differentiable, (t1, . . . , tn) a point in [−1, 1]n and ∆i such that{
∂f

∂εi
(ε1, . . . , εi , ti+1, . . . , tn), εi ∈ [−1, 1]

}
⊆ ∆i.

Then f̃ (ε1, . . . , εn) = f (t1, . . . , tn) +
n∑

i=1

∆i(εi − ti), means

if f̃ (ε∗1 , . . . , ε
∗
n), ε∗i = [1,−1], computed with Kaucher arithmetic, is an

improper interval, then pro f̃ (ε∗1 , . . . , ε
∗
n) is an inner-approx of f (ε1, . . . , εn).

f̃ (ε1, . . . , εn), εi = [−1, 1], is an outer-approx of f (ε1, . . . , εn).

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Generalized affine forms and inner range computation

Generalized affine forms

The generalized mean-value theorem defines generalized affine forms: for
f : Rn → R,

f ε(t1, . . . , tn) +
n∑

i=1

∆i(εi − ti),

where
{
∂f ε

∂εi
(ε), ε ∈ [−1, 1]n

}
v ∆i.

We want an inductive computation of these forms on arithmetic
expressions

Order 0 forms

The partial derivatives ∆i are evaluated with intervals

Example: f (x) = x2 − x , x ∈ [2, 3], thus
f ε(ε1) = (2.5 + 0.5ε1)2 − (2.5 + 0.5ε1).
We get f̃ ε(ε1) = 3.75 + [1.5, 2.5]ε1, that can be interpreted as:

pro(3.75 + [1.5, 2.5][1,−1]) ⊆ f ([−1, 1]) ⊆ 3.75 + [1.5, 2.5][−1, 1]

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Generalized affine forms and inner range computation

Generalized affine forms

The generalized mean-value theorem defines generalized affine forms: for
f : Rn → R,

f ε(t1, . . . , tn) +
n∑

i=1

∆i(εi − ti),

where
{
∂f ε

∂εi
(ε), ε ∈ [−1, 1]n

}
v ∆i.

We want an inductive computation of these forms on arithmetic
expressions

Order 0 forms

The partial derivatives ∆i are evaluated with intervals

Example: f (x) = x2 − x , x ∈ [2, 3], thus
f ε(ε1) = (2.5 + 0.5ε1)2 − (2.5 + 0.5ε1).
We get f̃ ε(ε1) = 3.75 + [1.5, 2.5]ε1, that can be interpreted as:

pro(3.75 + [1.5,−1.5]) ⊆ f ([−1, 1]) ⊆ 3.75 + [−2.5, 2.5]

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Generalized affine forms and inner range computation

Generalized affine forms

The generalized mean-value theorem defines generalized affine forms: for
f : Rn → R,

f ε(t1, . . . , tn) +
n∑

i=1

∆i(εi − ti),

where
{
∂f ε

∂εi
(ε), ε ∈ [−1, 1]n

}
v ∆i.

We want an inductive computation of these forms on arithmetic
expressions

Order 0 forms

The partial derivatives ∆i are evaluated with intervals

Example: f (x) = x2 − x , x ∈ [2, 3], thus
f ε(ε1) = (2.5 + 0.5ε1)2 − (2.5 + 0.5ε1).
We get f̃ ε(ε1) = 3.75 + [1.5, 2.5]ε1, that can be interpreted as:

pro([5.25, 4.25]) ⊆ f ([−1, 1]) ⊆ [1.25, 6.25]

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Generalized affine forms and inner range computation

Generalized affine forms

The generalized mean-value theorem defines generalized affine forms: for
f : Rn → R,

f ε(t1, . . . , tn) +
n∑

i=1

∆i(εi − ti),

where
{
∂f ε

∂εi
(ε), ε ∈ [−1, 1]n

}
v ∆i.

We want an inductive computation of these forms on arithmetic
expressions

Order 0 forms

The partial derivatives ∆i are evaluated with intervals

Example: f (x) = x2 − x , x ∈ [2, 3], thus
f ε(ε1) = (2.5 + 0.5ε1)2 − (2.5 + 0.5ε1).
We get f̃ ε(ε1) = 3.75 + [1.5, 2.5]ε1, that can be interpreted as:

[4.25, 5.25] ⊆ f ([−1, 1]) ⊆ [1.25, 6.25]

Solves the single-occurence limitation but not quite the dependency
problem

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Generalized affine forms and inner range computation

Generalized affine forms

The generalized mean-value theorem defines generalized affine forms: for
f : Rn → R,

f ε(t1, . . . , tn) +
n∑

i=1

∆i(εi − ti),

where
{
∂f ε

∂εi
(ε), ε ∈ [−1, 1]n

}
v ∆i.

We want an inductive computation of these forms on arithmetic
expressions

Order 1 forms

Inductive computations with zonotopic outer-approximations of quantities
and partial derivatives ∆i : more precise that order 0

When computing the inner range of a scalar function as above, we use
only the interval range ∆i

But in general we have f : Rn → Rp and thus vectors of generalized affine
forms

Order 1 forms code some dependency between the components of f or f ε :
also allows us to define joint inner range

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Joint inner range of a vector function

Algorithm to compute a set of boxes proved to be in the image of f :

Based on input set bisection + a sufficient condition for a box ỹ to be in
range(f , x).

Only needs an outer approximation of the Jacobian of f

Goldzstejn-Jaulin 2010 (f : Rn → Rn), MGKP 2013 (extension
f : Rn → Rp)

x

x̃
x̃

fS

(fS)−1

ỹ

x̃ + Γ(J, x̃− x̃ , ỹ − f (x̃))
fS(x̃)

fS(x) = {f (x) : x ∈ x}

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Characterization of the joint inner range of order 1 affine vectors: example

Example

Let x = (x1, x2) ∈ [2, 3]× [3, 4] and

f (x) =

(
x3

1 − 2x1x2

x3
2 − 2x1x2

)
Joint inner range of the corresponding order 1 affine vectors costly but rarely
needed

0

5

10

15

20

25

30

35

40

45

50

-8 -6 -4 -2 0 2 4 6 8 10

f 2
(x̌

)

f1(x̌)

Exact frontier

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Hybrid systems analysis

As an extension of classical program (discrete-time) analysis

Classical program analysis: inputs given in ranges, possibly with bounds on
the gradient between two values

Behaviour is often not realistic

Hybrid systems analysis: analyze both physical environment and control
software for better precision

Environment modelled by switched ODE systems
abstraction by guaranteed integration (the solver is guaranteed to
outer-approximate the real solution)

Interaction between program and environment modelled by assertions in the
program

sensor reads a variable value at time t from the environment,
actuator sends a variable value at time t to the environment,

Other possible use of guaranteed integration in program analysis: bound
method error of ODE solvers

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Example: the ATV escape mechanism

Time is controlled by the program (j)

Program changes parameters (HYBRID_PARAM: actuators) or mode (not
here) of the ODE system

Program reads from the environment(HYBRID_DVALUE: sensors) by calling
the ODE guaranteed solver

Could demonstrate convergence towards the safe escape state (CAV 2009,
DASIA 2009 with Olivier Bouissou).

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Temporal logics : general properties on trajectories

Linear time temporal logics

Simple LTL (Pnueli 1979)

Metric temporal logics (Koymans 1990) used for falsification of properties
in real-time (hybrid) systems, (see e.g. Sankaranarayanan & Fainekos,
HSCC 2012

Modalities

1st order predicate logics ∧, ∨, ⇒, ¬ etc.

temporal modalities ; e.g.
� p : p is true always in the future
♦ p : p is going to be true at some point in the future

Adding time (MTL)

We add a time interval as index to the modalities

�[0,300] p : p is always true for times (in the future) between 0 and 300

♦[5,10] p : p is eventually true between times 5 and 10

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Examples

This is a logics on states, for all trajectories

♦[0,2] (y > 0.7) is true
but �[0,2] (y > 0.7) is false

Examples of interesting properties in control

Stability (invariance) : �[t,∞[(x ∈ K)

A signal x2 being close to a reference signal x1:
�[0,∞[

(
(x1 > 0.7)⇒ ♦[0,0.1](x2 > 0.7)

)
(whener x1 crosses threshold 0.7,

so does x2 within [0, 0.1] time unit - think of a decision taken by a system
computing in finite precision)

Bounded-time stabilization with respect to disturbances : whenever signal
gets outside its reference range, it should be brought in this range in
bounded time and remain there for some time
�[0,∞[

(
(x ≤ 100) ∧ ((x > 10)→ ♦[0,150]�[0,10](x ≤ 10))

)
SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Quantifying on executions

Branching time logics

CTL, CTL∗ (Clarke, Emerson 1981)

Add quantification over paths : the future is not determined (as in e.g.
dynamical systems with uncertainties, differential inclusions etc.)

Intuitively : logical operators on paths, and on states

Syntactically

A means “for all paths” in the future

E means “exist a path” in the future

This is combined with � and ♦

Example (reachability) : E♦ p, some state satisfying p is reachable in
some future path

Example (safety : p is invariant) : A� p, all states in all possible futures
satisfy p

As used in e.g. UPPAAL

Henzinger, Sifakis et al. 1992

Several fragments and syntax, basically, add time constraints

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Examples

Differential inclusions

Consider an uncertain dynamical system, e.g. a differential inclusion :

ẋ ∈ F (x)

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Examples

Viability property

For all initial states in K , there exists a path such that in the future, x ∈ K
(the viability kernel) :

x(0) ∈ K ⇒ (E� (x ∈ K))

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Semantics of TCTL

State formulas

�I p is true (on state x) iff ∀t ∈ I , p(t, x) is true

♦I p is true (on state x) iff ∃t ∈ I , p(t, x) is true.

Note that ¬�I p = ♦I ¬p

Path formulas

A p is true iff ∀x , p(t, x) is true

E p is true iff ∃x such that p(x , t) is true

Note also ¬(A p) = E (¬p)

Combining modalities: examples

A�Ip : ∀x , ∀t ∈ I , p is true

A♦Ip : ∀x , ∃t ∈ I (potentially depending on x then!), p is true

E�Ip : ∃x , ∀t ∈ I , p is true (x does not depend on t!)

E♦Ip : ∃x , ∃t ∈ I , p is true

For now, we will only discuss these properties

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Abstract model-checking

Abstraction

Now, we only have approximations of the trajectories g(t, x0), solution of the
IVP ẋ = f (x), x(0) = x0 ∈ x0 : suppose we have on time interval I an
outer-approximation function g : I × ℘(Rn)→ ℘(Rn) and an
inner-approximation function g : I × ℘(Rn)→ ℘(Rn) (on time × initial
condition, generally in box x0), (semi-)decide some of TCTL formulas!

Most notable related work

Combination of abstract interpretation and model-checking (Clarke,
Grumberg & Long 1992) but not applied on numerical properties in general

Falsification methods on MTL and hybrid systems (Sankaranarayanan &
al. S-Taliro tool 2011) but only on one execution

Monitoring, falsification, parameter synthesis of STL specs. on hybrid
systems (Breach, Alexandre Donzé 2010)

Monitoring of BLTL on hybrid systems (Goldsztejn et al. 2015)

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Interpreting TCTL

Sufficient conditions (proof)

If p is true on g(I , x0) then A�Ip is true (we will see later how to do this)

If {x ∈ Rn|p(x)} ∩ g(I , x0) 6= ∅ then E♦Ip is true

If ∃t ∈ I such that p is true on g(t, x0) then A♦Ip

If p is true on g(I , x0) then E�Ip (strong condition, we can do better,
later)

Necessary conditions (falsification)

E�Ip implies g(I , x0) ∩ {x ∈ Rn|p(x)} 6= ∅
A♦Ip implies g(I , x0) ∩ {x ∈ Rn|p(x)} 6= ∅

Use of negation

Use ¬A�Ip = E♦I¬p ; a sufficient condition on the latter (through the
inner-approximation) implies that A�p is false (whereas the interpretation
using outer-approximation can only prove A�p to be true)

Similarly, we can use ¬A♦Ip = E�I¬p

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Interpreting TCTL

Sufficient conditions

A�I=[5,7](x1 ≥ 180) (x ≥ 180 is true on g(I , x0))

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Interpreting TCTL

Sufficient conditions

A♦I (x1 ≥ 185) (∃t ∈ I such that p is true on g(t, x0))

E�I (x1 ≥ 185) (x1 ≥ 185 is true on g(I , x0))

We cannot prove A�I (x1 ≥ 185) is true, or false

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Interpreting TCTL

Sufficient conditions

E♦I (x1 ≥ 190) ({x1 ≥ 190} ∩ g(I , x0) 6= ∅)

Use of negation to falsify A�I (x1 ≥ 190)

Use ¬A�I (x1 ≥ 190) = E♦I (x1 < 190)

E♦I (x1 < 190) ({x1 < 190} ∩ g(I , x0) 6= ∅) hence A�I (x1 ≥ 190) is false

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Computing these inner-/outer- approximations : Taylor models

Problem statement (ODE)

For ODE
ẋ = f (x) with f : Rn → Rn

Suppose it has a unique solution on time interval [0,T], for an initial
condition x0 at time 0.

Suppose g : R× Rn → Rn is the C 1 function such that t → g(t, x0) is the
solution to this equation with initial condition x0 ∈ Rn.

Outer-approximation

Use Taylor method (Moore, Berz & Makino etc.) for outer-approximating
solution g to the ODE at some order m :

gj(t, x0) = x0,j +
m∑
i=1

f
(i)
j

(0,x0)

i!
t i +

f
(m+1)
j

(ξ,x0))

(m+1)!
tm+1

where f (i) is defined inductively as follows :

f
(l+1)
j (t, x0) =

n∑
i=1

∂f
(l)
j

∂xi
fi (g(t, x0))

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Bounding the remainder: Picard-Lindelöf iteration

Integral operator

Let F (g)(t, x) = x0 +
∫ t

0
f (g(s, x))ds

Under simple hypotheses, the fixed point of F (on a small time interval
[0,T]) exists and can be computed by iteration of F , and is the solution to
our ODE

Rough enclosures

Can also be used also to estimate the remainder
f

(m+1)
j

(ξ,x0)

(m+1)!
(ξ ∈ [0,T])

since this depends on g(ξ, x0)

Suppose we have x, an interval such that

x0 + [0,T]f (x) ⊆ x

then [0,T]× x contains all points g(t, x0), where g is a solution to our
ODE on [0,T], t ∈ [0,T] and x0 ∈ x0.

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Taylor models

For inner-approximations

To compute inner-approximation, we need outer-approximations of the
Jacobian of the solution, with respect to initial conditions, as in the
discrete case

The variational equation (as in e.g. Wilczak) is the ODE that is satisfied

by g and its Jacobian Jg
j,i =

∂gj
∂x0,i

with respect to the initial condition x0 :

dg
dt

(t, x0) = f (g(t, x0))
dJ

g
j,i

dt
(t, x0) =

n∑
k=1

∂fj
∂xk

(g(t, x0))Jg
k,i (t, x0)

Furthermore, the initial condition that gj and Jg
j,i satisfy are :

gj(0, x0) = x0,j

Jg
j,i (0, x0) = δi,j

where δi,j is the Kronecker symbol.

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Example

A simple ODE with uncertain initial values

Consider the ODE ẋ = x with x0 ∈ [0, 1] and t ∈
[
0, 1

2

]
The variational equation associated to this ODE is (noting Jg = Jg

1,1) :

dg
dt

(t, x0) = g(t, x0)
dJg

dt
(t, x0) = Jg (t, x0)

Furthermore, the initial condition that g and Jg satisfy are :

g(0, x0) = x0

Jg (0, x0) = 1

Rough enclosures

We see that x = [0, 2] satisfies [0, 1] +
[
0, 1

2

]
[0, 2] ⊆ [0, 2] hence for

all t ∈
[
0, 1

2

]
, for all x0 ∈ [0, 1], g(t, x0) ∈ [0, 2].

Furthermore, we see that x = [1, 2] satisfies 1 +
[
0, 1

2

]
[1, 2] ⊆ [1, 2]

so for all t ∈
[
0, 1

2

]
, for all x0 ∈ [0, 1], Jg (t, x0) ∈ [1, 2].

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Outer-approximation for the solutions (order 3)

Taylor model

g (t, x0) = x0 + x0t + x0
2
t2 + g(ξ,x0)

6
t3

on x0 ∈ x0 = 1
2

+ 1
2
ε1 ∈ [0, 1]:

g (t, x0) =
(

1
2

+ 1
2
ε1

) (
1 + t + t2

2

)
+ [0,2]

6
t3

(g and g = exp, over time)

For instance, at time 1
2

g
(

1
2
, x0

)
= [13

16
, 41

48
] + 13

16
ε1

Hence [0, e
1
2] ∼ [0, 1.64872] ⊆ g

(
1
2
, x0

)
=
[
0, 5

3

]
∼ [0, 1.66667]

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Outer-approximation of the Jacobian (order 3), appli to inner-approx

Taylor model for the Jacobian

We can outer-approximate the Jacobian, for all t ∈
[
0, 1

2

]
:

Jg (t, x0) = 1 + t + t2

2
+ Jg (ξ,x0)

6
t3

Jg(t, x0) = 1 + t + t2

2
+ [1,2]

6
t3

Example : inner-approximation at time t = 1
2

Jg
(

1
2
, x0

)
∈

[
79
48
, 5

3

]
Mean value theorem, evaluated in ε1 = 0, that is x0 = mid(x0) = 1

2
, at

time t = 1
2
, yields an inner-approximation of {g(1

2
, x0), x0 ∈ x0 = [0, 1]}:

g
(

1
2
, x0

)
= pro

(
g
(

1
2
, 1

2

)
+ 1

2
Jg
(

1
2
, x0

)
[1,−1]

)
= pro


[

13

16
,

41

48

]
︸ ︷︷ ︸

proper

+ 1
2

[
79

48
,−79

48

]
︸ ︷︷ ︸

improper

 = pro


[

157

96
,

3

96

]
︸ ︷︷ ︸
improper


=
[

3
96
, 157

96

]
∼ [0.03, 1.635]

⊆ {g
(

1
2
, x0

)
, x0 ∈ x0} =

[
0, e

1
2

]
∼ [0, 1.649]

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Quality of the approximations: example of the Brusselator

{
ẋ1 = 1 + x2

1 x2 − 2.5x1

ẋ2 = 1.5x1 − x2
1 x2

with x1(0) ∈ [0.9, 1] and x2(0) ∈ [0, 0.1].

Taylor model of order 3 in t, interval vs affine arithmetic evaluation

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

The Brusselator (x1): Taylor model of order 4 in t, up to t=10

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

The Brusselator (x2): Taylor model of order 4 in t, up to t=10

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Back to inner-approximated function g(t, x0) for all t ∈ [0, 1
2] and TCTL

For this, we have to compute :

g (t,mid(x0)) +
1

2
Jg (t, x0) [1,−1] ⊆ {g (t, x0) , x0 ∈ x0 = [0, 1]}

So we need the center, for all t :

First,

g

(
t,

1

2

)
=

[
1

2
+

1

2
t +

1

4
t2,

1

2
+

1

2
t +

1

4
t2 +

1

3
t3

]

And the outer-approximation of the Jacobian, for all t and x0 ∈ x0 = [0, 1] :

Jg (t, x0) ∈
[

1 + t +
t2

2
+

1

6
t3, 1 + t +

t2

2
+

1

3
t3

]

Therefore

For all t ∈
[
0, 1

2

]
,

g (t, [0, 1]) =

[
t3

4
, 1 + t +

t2

2
+

t3

12

]
⊆ {g (t, x0) , x0 ∈ [0, 1]}

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Function g(t, x) and application

Application

Consider E♦[1
4
, 1

2] (y > 1.5)

It will be true if g
([

1
4
, 1

2

]
, [0, 1]

)
intersects y > 1.5

We see that

g

([
1

4
,

1

2

]
, [0, 1]

)
=

[
1

64
, 1.5 +

7

48

]
∩ [1.5,∞[6= ∅

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

In general

Algorithmically

We produce Taylor models for solutions and Jacobians (between all
[kT , (k + 1)T])

We deduce on all these time intervals g and g which are polynomial in t
with coefficients in affine forms (linking them to uncertain initial values
and parameters)

For predicates p = (f (t, x) ≥ 0) with f polynomial, deciding p is true on
g(I , x0) (resp. g(I , x0)) can be done by any interval method (direct
evaluation, affine forms, Bernstein polynomials etc.)

For such predicates, deciding non-emptyness of the intersection of
{x ∈ Rn|p(x)} with g(I , x0) (resp. g(I , x0)) is a constraint satisfaction
problem

Symbolic expressions in t and the εi allow refinements: example of E�Ip

A sufficient condition is p true on g(I , x0)

If p = (f (t, x) ≥ 0), a finer criterion is to check the non-emptyness of the
constraint on εi : f (I , g(I , x0)) ≥ 0 (polynomial in εi)

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Example : aircraft (Lygeros 2011 & Sankaranarayanan 2014)

Differential model

ẋ1 = − SρB0
2m

x2
1 − gsin

(
πx2
180

)
+ u1

m
− Sρ

2m
x2

1 (B1u2 + B2u
2
2)

ẋ2 = SρC0
2m

x1 − g
cos(πx2

180)
x1

+ SρC1
2m

x1u2

ẋ3 = x1sin
(
πx2
180

)
with initial conditions x1(0) ∈ [200, 260], x2(0) ∈ [−10, 10], x3(0) ∈ [120, 150].

x1 : speed, x2 : angle, x3 : altitude

the inputs u1 ∈ [0.1, 0.2] and u2 ∈ [0.1, 0.2] represent respectively the
thrust and the angle of attack.

Constants : B0 = 0.07351,B1 = −0.0015,B2 = 0.00061,C0 =
0.1667,C1 = 0.109,m = 74000, g = 9.81, S = 158, ρ = 0.3804

The model is correct for small angle approximation for u2.

Typical temporal properties to be checked (Sankaranarayanan 2013)

¬(�[0.5,1.5]a ∧ ♦[3,4]b), ¬(�[0,4]a ∧ ♦[3.5,4]d), ¬♦[1,3]e), ¬(♦[0.5,1]a ∧�[3,4]g),
¬(�[0,5]h, ¬(�[2,2.5](i1 ∧ i2) where a is 240 ≤ x1 ≤ 250, b is 230 ≤ x1 ≤ 240, d
is 240 ≤ x1 ≤ 240.1, e is x1 ≥ 260, g is 270 ≤ x1 ≤ 280, h is 190 ≤ x1 ≤ 210,
i1 is 190 ≤ x1 ≤ 200, i3 is 190 ≤ x3 ≤ 200.

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Example : aircraft (Lygeros 2011 & Sankaranarayanan 2014)

Inner-approximation: there exist trajectories for which (�[0.,1.0]a∧♦[5,7]b) is true

There exist trajectories for which property is true.

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Example : aircraft (Lygeros 2011 & Sankaranarayanan 2014)

Does there also exist trajectories for which (�[0.,1.0]a ∧ ♦[5,7]b) is false ?

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Example : aircraft (Lygeros 2011 & Sankaranarayanan 2014)

Does there also exist trajectories for which (�[0.,1.0]a ∧ ♦[5,7]b) is false ?

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

Future work

Extension to the full logics

Interpret the full fragment
A/E(stateformula) of TCTL

Will need propagation of time
constraints in the vein of (Ishii,
Yonezaki, Goldsztejn 2015 -
BLTL)

Any questions?

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

