# Set-based methods in programs and systems verification

Sylvie Putot and Eric Goubault Cosynus team, LIX, Ecole Polytechnique

SWIM 2016, ENS Lyon



# Validation of programs (discrete systems)

- Does it crash? can we bound program variables? does it compute the square root? at what precision?
- For embedded systems, work on control code since the 2000s (FLUCTUAT, Astrée etc.) in particular using abstract interpretation (Cousot & Cousot 1977-) mostly on invariant properties
- Connections to set-based methods

#### Validation of hybrid systems (discrete and continuous systems)

- For embedded systems control, many properties only provable on closed-loop systems (with the physical environment)
- Even more connections to set-based methods (Taylor models as in e.g. Berz & Makino~1985)
- Connections with model-checking (Clarke, Emerson, Queille, Sifakis 1980) : generalisation of reachability and invariance properties (if some value is bounded for some time, can we reach some prescribed state?)

## Quick guided tour on our work on abstract interpretation of numerical programs

- Set-based methods and Abstract Interpretation, for validation of programs (here, just in real numbers!)
  - An introduction to abstract interpretation
  - Zonotopes for reachability, invariant synthesis, and functional proofs of algorithms

#### Some work in progress on abstract interpretation of hybrid systems

- Extension of zonotopic methods: inner- and outer- approximations of the set of solutions of uncertain ODEs
- Use for temporal verification, LTL, CTL and (abstract) model-checking



# Computation of sets of reachable values of variables at any program points (FLUCTUAT)

- Need to bound real and finite precision values of variables, and the difference between them, decomposed on the provenance of these errors
- Accurate outer-approximation with affine forms
- Implemented in the FLUCTUAT analyzer for C programs

#### But how pessimistic are the results?

- Joint use of inner- and outer-approximations to characterize the quality of analysis results
  - Inner-approximation: sets of values of the outputs, that are sure to be reached for some inputs in the specified ranges.
  - Use of affine forms with generalized intervals as coefficients



#### Basics

- Choose properties of interest (for instance values of variables)
- Outer-approximate them in an abstract lattice (partially ordered structure with least upper bounds/greatest lower bounds) whose elements are particular "tractable" sets
- Interpret computations in this lattice





## Example in intervals

Abstract semantics of programs in intervals (for invariant generation)

• Program seen as a discrete dynamical system  $X^{n+1} = F(X^n)$ 

- · based on a notion of control points in the program
- equations describe how values of variables are collected at each control point, for all possible executions (collecting semantics)

| void main() {         | $x_0$                 | = | Т                        |
|-----------------------|-----------------------|---|--------------------------|
| int x=[-100,50]; [1]  | $x_1$                 | = | [-100, 50]               |
| while [2] (x < 100) { | <i>x</i> <sub>2</sub> | = | $x_1 \cup x_4$           |
| [3] x=x+1; [4]        | <i>X</i> 3            | = | $]-\infty,99]\cap x_2$   |
| } [5]                 | <i>X</i> 4            | = | $x_3 + [1, 1]$           |
| }                     | <i>X</i> 5            | = | $[100, +\infty[\cap x_2$ |

#### Invariants generation = least fixed point computation

- The sets of possible values of variables at control points are invariants of *F*, computed as the least fixpoint of the system
- F monotonic on a complete lattice, least fixpoint exists



#### Invariants and validation

- Invariants allow to conclude about the safety (for instance absence of run-time errors)
- E.g. we will find for : int x=[-100,50]; [1] while [2] (x < 100) { [3] x=x+1; [4] } [5] x<sub>3</sub> = [-100,99] and the program will not run into an overflow

#### Computation of invariants as the least fixpoint X = F(X)

• Limit of the Kleene iteration (Jacobi/Gauss-Seidel like method)  $X^0 = \bot, X^1 = F(X^0), \dots, X^{k+1} = X^k \cup F(X^k)$ 

• with convergence acceleration to terminate in finite time

• An alternative: policy iteration (Newton-like method)

#### The least fixpoint is the best inductive invariant $(F(X) \subseteq X)$ ...

- ... but invariants are not always inductive (in a given abstract domain)
- Search for a disjunction which is inductive: algorithm inspired from constraint programming (Mine and al. 2015 on boxes, B. Kabi's talk)

E PARIS-SACLAY

# Affine Arithmetic (Comba & Stolfi 93) for real-numbers abstraction

## Affine forms

• Affine form for variable x:

 $\hat{x} = x_0 + x_1 \varepsilon_1 + \ldots + x_n \varepsilon_n, \ x_i \in \mathbb{R}$ 

where the  $\varepsilon_i$  are symbolic variables (*noise symbols*), with value in [-1, 1].

- Sharing  $\varepsilon_i$  between variables expresses implicit dependency
- Interval concretization of affine form x̂:

$$\left[x_0 - \sum_{i=0}^n |x_i|, x_0 + \sum_{i=0}^n |x_i|\right] = x_0 + \left[-\|(x_i)\|_1, \|(x_i)\|_1\right]$$

Geometric concretization as zonotopes (center symmetric polytopes)



#### Basic arithmetic operations

• Assignment x := [a, b] introduces a noise symbol:

$$\hat{x} = rac{(a+b)}{2} + rac{(b-a)}{2} arepsilon_i$$

Addition/subtraction are exact:

$$\hat{x} + \hat{y} = (x_0 + y_0) + (x_1 + y_1)\varepsilon_1 + \ldots + (x_n + y_n)\varepsilon_n$$

• Non linear operations : approximate linear form, new noise term bounding the approximation error

$$\hat{x} \times \hat{y} = x_0 y_0 + \sum_{i=0}^n (x_0 y_i + x_i y_0) \varepsilon_i + \left( \sum_{1 \le i \ne j \le n} |x_i y_j| \right) \varepsilon_{n+1}$$

(better formulas including SDP computations of the new term)

• Close to Taylor models of order 1: low time complexity! and easy to implement on a finite-precision machine

ECHNIQUE E PARIS-SACLAY

#### Reminder!

Need to define an order relation and interpret set-theoretic operations such as  $\cup$  and  $\cap$  (or at least outer-approximations), as for e.g. :

$$\begin{cases} x_1 &= [-100, 50] \\ x_2 &= x_1 \cup x_4 \\ x_3 &= ] - \infty, 99] \cap x_2 \\ x_4 &= x_3 + [1, 1] \\ x_5 &= [100, +\infty[\cap x_2] \end{cases}$$

#### Note

- We are actually abstracting input-output relationships, not just the image of functions (see Arxiv 2008 & 2009 & FMSD 2016)
- This is the major difference with respect to classical work on zonotopes (Comba & Stolfi, Girard etc.)





Abstraction of x:  $x = 5 + 5\varepsilon_1$ Abstraction of function  $x \rightarrow y = x^2 - x$  as

 $y = 32.5 + 50\varepsilon_1 + 12.5\eta_1$ 



real 
$$x = [0, 10];$$
  
real  $y = x \cdot x - x;$ 



Abstraction of x:  $x = 5 + 5\varepsilon_1$ Abstraction of function  $x \rightarrow y = x^2 - x$  as

$$y = 32.5 + 50\varepsilon_1 + 12.5\eta_1 = -17.5 + 10x + 12.5\eta_1$$

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

# Set operations on affine sets / zonotopes: meet





#### Interpreting tests

- Translate the condition on noise symbols
- Abstract domain for the noise symbols: intervals, octagons, etc.
- Test interpretation is (interval) constraint propagation

#### Example

```
real x = [0,10]; real y = 2*x;
if (y \ge 10) y = x;
```

- Affine forms before tests:  $x = 5 + 5\varepsilon_1$ ,  $y = 10 + 10\varepsilon_1$
- In the if branch: constraint  $\varepsilon_1 \ge 0$

# Set operations on affine sets / zonotopes: meet



#### Interpreting tests

- Translate the condition on noise symbols
- Abstract domain for the noise symbols: intervals, octagons, etc.
- Test interpretation is (interval) constraint propagation

#### When going to finite precision analysis

- Constraints give condition on idealized (in reals) and machine (in floating-point numbers) paths to be taken by an execution
- Unstable test detection is a constraint satisfaction problem

$$\begin{pmatrix} \hat{x} = 3 + \varepsilon_1 + 2\varepsilon_2 \\ \hat{u} = 0 + \varepsilon_1 + \varepsilon_2 \end{pmatrix} \cup \begin{pmatrix} \hat{y} = 1 - 2\varepsilon_1 + \varepsilon_2 \\ \hat{u} = 0 + \varepsilon_1 + \varepsilon_2 \end{pmatrix} = \begin{pmatrix} \hat{x} \cup \hat{y} = 2 + \varepsilon_2 + 3\eta_1 \\ \hat{u} = 0 + \varepsilon_1 + \varepsilon_2 \end{pmatrix}$$



# Construction (low complexity!: $\mathcal{O}(n \times p)$ )

• Keep "minimal common dependencies"

$$z_i = \underset{x_i \land y_i \le r \le x_i \lor y_i}{\operatorname{argmin}} |r|, \ \forall i \ge 1$$



$$\begin{pmatrix} \hat{x} = 3 + \varepsilon_1 + 2\varepsilon_2 \\ \hat{u} = 0 + \varepsilon_1 + \varepsilon_2 \end{pmatrix} \cup \begin{pmatrix} \hat{y} = 1 - 2\varepsilon_1 + \varepsilon_2 \\ \hat{u} = 0 + \varepsilon_1 + \varepsilon_2 \end{pmatrix} = \begin{pmatrix} \hat{x} \cup \hat{y} = 2 + \varepsilon_2 + 3\eta_1 \\ \hat{u} = 0 + \varepsilon_1 + \varepsilon_2 \end{pmatrix}$$



## Construction (low complexity!: $O(n \times p)$ )

• Keep "minimal common dependencies"

$$z_i = \underset{x_i \land y_i \leq r \leq x_i \lor y_i}{\operatorname{argmin}} |r|, \; \forall i \geq 1$$

- For each dimension, concretization is the interval union of the concretizations: γ(x̂ ∪ ŷ) = γ(x̂) ∪ γ(ŷ)
- A more precise upper bound: NSAD 2012

ECHNIQUE

## Convergence of fixpoint computation: from concrete to abstract

General result on recursive linear filters, pervasive in embedded programs:

$$x_{k+n+1} = \sum_{i=1}^{n} a_i x_{k+i} + \sum_{j=1}^{n+1} b_j e_{k+j}, \ e_i \in [m, M]$$

- Concrete scheme has bounded outputs iff zeros of x<sup>n</sup> − ∑<sub>i=0</sub><sup>n-1</sup> a<sub>i+1</sub>x<sup>i</sup> have modulus stricty lower than 1.
- Then our Kleene iteration (with some initial unfolding p and uncyclic unfolding q) converges towards a finite outer-approximation of the outputs

$$\hat{X}_i = \hat{X}_{i-1} \cup F^q(E_i, \dots, E_{i-k}, \hat{X}_{i-1}, \dots, \hat{X}_{i-k})$$

in finite time

- The abstract scheme is a perturbation (by the join operation) of the concrete scheme
- Proof uses: for each dimension γ(x̂ ∪ ŷ) = γ(x̂) ∪ γ(ŷ) and F<sup>q</sup> is contracting "enough" for some q

Generalization to some recurrent polynomial schemes





## $S_{n+2} = 0.7E_{n+2} - 1.3E_{n+1} + 1.1E_n + 1.4S_{n+1} - 0.7S_n$

- after initial unfolding (10)+first cyclic unfolding (80) first join
- after first join, perturbation of the original numerical scheme
- then second cyclic unfolding, contracting back: second join and post-fixpoint



## $S_{n+2} = 0.7E_{n+2} - 1.3E_{n+1} + 1.1E_n + 1.4S_{n+1} - 0.7S_n$

Fixpoint (polyhedral outer-approximation of the ellipsoidal invariant) below:

| Diaw zonotopes (zo/3b) |                           |                           |               |
|------------------------|---------------------------|---------------------------|---------------|
| Items                  | 6,73e-09                  |                           |               |
| polymake:              |                           |                           |               |
|                        |                           |                           |               |
|                        | 5,05e-09                  |                           |               |
|                        |                           |                           |               |
|                        |                           |                           |               |
| draw zonotope:         | 3,376-09                  |                           |               |
| ( E 5                  |                           |                           |               |
| E1 50                  |                           |                           |               |
| N C                    | 1,686-09                  |                           |               |
|                        |                           |                           |               |
| Draw!                  | 0.000.000                 |                           |               |
|                        | 0                         | 25 50                     |               |
|                        |                           |                           |               |
|                        | Variables / Files         | Variable Interval         |               |
|                        | E (double)<br>E0 (double) | Float :                   | 2.77722270    |
|                        | E1 (double)               | -1.08966847<br>Real :     | 2.75703358    |
|                        | N (integer)<br>S (double) | -1.08966845               | 2.75763356    |
|                        | S0 (double)               | Global error :            |               |
|                        | S1 (double)               | -1.56706764e-8            | 1.56706766e-8 |
|                        | j (integer)               | Relative error :          |               |
|                        | main (integer)            | -00<br>Higher Order error | +00           |
|                        | zonodrawfiter.c           | 0                         | 0             |
|                        |                           | At current point :        |               |
|                        |                           |                           |               |
|                        |                           |                           |               |
|                        |                           |                           |               |
|                        |                           |                           |               |



# Fluctuat : also properties of finite precision arithmetic (here Householder)

| FIL FIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uctuat – Householder_sqrt                                                                                                              |                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ada offer retter                                                                                                                       |                                                                                                                                                                                                                                           |
| 1 #include "daed_builtins.h"<br>2 #include <pre>smath.h&gt;</pre><br>3 #define_EPS 0.00000001 /* 10A-8 */<br>4 int main 0<br>5 f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8,45e-07                                                                                                                               |                                                                                                                                                                                                                                           |
| 6 float xn, xnp1, residu, Input, Output,<br>should be zero;<br>7 int j;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 220 07                                                                                                                               |                                                                                                                                                                                                                                           |
| <pre>8 Input = FBETWEEN(16.0,16.002);<br/>9 xn = 1.0/Input; xnp1 = xn;<br/>10 residu = 2.0*_EPS*(xn+xnp1)/(xn+xnp1);</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9,220-07                                                                                                                               |                                                                                                                                                                                                                                           |
| 11 $\underline{i} = 0;$<br>12 while (fabs(residu) > _EPS) {<br>13 $xnp1 = xn^* (1.875 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,11e-07                                                                                                                               |                                                                                                                                                                                                                                           |
| $\frac{\text{Input}^{*}xn^{*}xn^{*}(-1.25+0.375^{*}(\text{Input}^{*}xn^{*}xn));}{\text{residu} = 2.0^{*}(xnpl-xn)/(xn+xnpl);}$ $\frac{15}{xn} = xnpl;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,00e+00                                                                                                                               | 25 50                                                                                                                                                                                                                                     |
| 16 <b>i</b> ++;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Variables / Files                                                                                                                      | Variable Interval                                                                                                                                                                                                                         |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Input (float)                                                                                                                          | Float :                                                                                                                                                                                                                                   |
| <pre>18 Output = 1.0 / xnp1;<br/>19 should_be_zero = Output-sqrt(Input);<br/>20 return 0;<br/>21 contemporation = 0;</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Output (float)<br>i (integer)<br>main (integer)                                                                                        | Real :<br>-1.02630258e-8 1.02636675e-8                                                                                                                                                                                                    |
| 18         Output = 1.0 / xnn1:           9         should be zero = Output-sqrt(Input);           20         return 0;           21}         Ooo = Warnings           Potental overflows :         Forenat to in in           From at to in in         Marries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Output (float)<br>i (integer)<br>main (integer)<br>residu (float)<br>should_be_zero (float)<br>signgam (integer)                       | -1.18123370e-6 1.18123350e-6<br>Real:<br>-1.02630258e-8 1.02636675e-8<br>Global error:<br>-1.17097598e-6 1.17097576e-6<br>Relative error:                                                                                                 |
| 18     Output = 1.0 / xnpl;       19     should be zero = Output-sqrt(Input);       20     return 0;       21     Oo       22     Potential overflows :       Tror at top in i       Value at top in i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Output (float)<br>i (integer)<br>main (integer)<br>residu (float)<br>should be_zero (float)<br>signgam (integer)<br>Householder_sqrt.c | 1.81238706-0 1.181239506-0<br>Real:<br>-1.02630258e-8 1.02636675e-8<br>Global error:<br>-1.17097598e-6 1.17097576e-6<br>Relative error:<br>-00 +00<br>Higher Order error:                                                                 |
| 18     Output = 1.0 / xnp1;       19     should be zero = Output-sqrt(Input);       20     return 0;       21     Occiliation       Potential overflows :       Tror at top in i       Value at top in i       Threats :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Output (float)<br>i (integer)<br>main (integer)<br>residu (float)<br>should be zero (float)<br>signgam (integer)<br>Householder_sqrt.c | 181238766-5 1.18123956-6<br>Real:<br>-1.02630258e-8 1.02636675e-8<br>Global error:<br>-1.17097598e-6 1.17097576e-6<br>Relative error:<br>-00 +00<br>Higher Order error:<br>0 0 0                                                          |
| 18     Output = 1.0 / xnD1:       9     should be zero = Output-sqrt(Input);       20     return 0;       21     Octual control of the stress in the | Output (float)<br>i (integer)<br>main (integer)<br>residu (float)<br>should be zero (float)<br>signgam (integer)<br>Householder_sqrt.c | 1.8123876e-0 1.18123956e-0<br>Real:<br>-1.02630258e-8 1.02636675e-8<br>Global error:<br>-1.17097598e-6 1.17097576e-6<br>Relative error:<br>-0 +00<br>Higher Order error:<br>0 0 0<br>At current point (17): *<br>-9.17837e-07 9.17837e-07 |
| 18     Output = 1.0 / xnn1:       19     should be zero = Output-sqrt(Input);       20     return 0;       21     ○ ○ Warnings       22     Potential overflows :       Threats :     Type       1     Unstable test (machine and real value do not take the s:       2     Outstable test (machine and real value do not take the s:       3     Outstable test (machine and real value do not take the s:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Output (float)<br>i (integer)<br>main (integer)<br>residu (float)<br>should be zero (float)<br>signgam (integer)<br>Householder_sqrt.c | 1.8123876e-0 1.18123956e-0<br>Real:<br>-1.02630258e-8 1.02636675e-8<br>Global error:<br>-0.17097598e-6 1.17097576e-6<br>Relative error:<br>-00 +00<br>Higher Order error:<br>0 0<br>At current point (17): *<br>-9.17837e-07 9.17837e-07  |

POLYTECHNIQUE

## Starting point

- Assert the quality of abstractions by looking at inner and outer approx
- Falsify properties
- Provide lower/upper bounds for convergence of numerical schemes

Newton algorithm for  $a \rightarrow 1/a$ , stop when  $|x_{n+1} - x_n| < 5.10^{-4}$ 

- Outer approximation: stopping criterion always satisfied after 4 iter  $(|x(4) x(3)| \subseteq [-2.6 \, 10^{-4}, 2.6 \, 10^{-4}]).$
- Inner approximation: some inputs falsify criterion on first 3 iterations  $([-7.7 \, 10^{-4}, -4.1 \, 10^{-4}] \subseteq x(3) x(2)).$



Inner approximation much more difficult than outer approximation (some pointers)

- Modal arithmetics (Kaucher 1973, Markov 1992, Goldsztejn 2005), Goldsztejn and Jaulin 2006
- Linear case for ODEs [Kurzhanski-Varaiya HSCC 2000, Althoff et al. CDC 2007, Kanade et al. CAV 2009]
- Simulation-based local inner approximations [Nghiem et al. HSCC 2010]
- Box bisections [Goldsztejn-Jaulin Reliable Computing 2010, Mullier-Goubault-Kieffer-Putot RC 2013]
- Parallelepipeds [Goldsztejn-Hayes SCAN 2006]
- Order 0 generalized affine forms [Goubault-Putot SAS 2007], order 1 [Goubault-Kieffer-Mullier-Putot HSCC 2014]

#### Will be useful in the rest of the talk...

- Check general temporal properties (TCTL in particular) on hybrid systems
- By a combination of inner- and outer- approximations

#### Generalized intervals

General bounds 
$$\mathbf{K} = \{[a, b], a \in \mathbb{R}, b \in \mathbb{R}\}$$
 ("improper" if  $a > b$ )

Kaucher arithmetic (only when no dependencies between arguments!)

All proper intervals : outer-approx  $(\forall x \in [x]) (\exists z \in [z]) (f(x) = z)$ All improper intervals : inner-approx  $(\forall z \in \text{pro } [z]) (\exists x \in \text{pro } [x]) (f(x) = z)$ .

Remedy : Mean-value theorem (à la Goldsztejn 2005)+affine arithmetic

Let  $f: \mathbb{R}^n \to \mathbb{R}$  differentiable,  $(t_1, \ldots, t_n)$  a point in  $[-1, 1]^n$  and  $\Delta_i$  such that

$$\left\{rac{\partial f}{\partial arepsilon_i}(arepsilon_1,\ldots,arepsilon_i,t_{i+1},\ldots,t_n),\ arepsilon_i\in[-1,1]
ight\}\subseteq oldsymbol{\Delta}_{f i}.$$
  
Then  $ilde{f}(arepsilon_1,\ldots,arepsilon_n)=f(t_1,\ldots,t_n)+\sum_{i=1}^noldsymbol{\Delta}_{f i}(arepsilon_i-t_i),$  means

if f̃(ε<sub>1</sub><sup>\*</sup>,...,ε<sub>n</sub><sup>\*</sup>), ε<sub>i</sub><sup>\*</sup> = [1,-1], computed with Kaucher arithmetic, is an improper interval, then pro f̃(ε<sub>1</sub><sup>\*</sup>,...,ε<sub>n</sub><sup>\*</sup>) is an inner-approx of f(ε<sub>1</sub>,...,ε<sub>n</sub>).

•  $\tilde{f}(\varepsilon_1, \ldots, \varepsilon_n)$ ,  $\varepsilon_i = [-1, 1]$ , is an outer-approx of  $f(\varepsilon_1, \ldots, \varepsilon_n)$ .

• The generalized mean-value theorem defines generalized affine forms: for  $f: \mathbb{R}^n \to \mathbb{R}$ ,

$$f^{\varepsilon}(t_1,\ldots,t_n)+\sum_{i=1}^n \mathbf{\Delta}_{\mathbf{i}}(arepsilon_{\mathbf{i}}-t_i),$$

where  $\left\{ \frac{\partial f^{\varepsilon}}{\partial \varepsilon_i}(\varepsilon), \ \varepsilon \in [-1,1]^n \right\} \sqsubseteq \mathbf{\Delta}_i$ .

• We want an inductive computation of these forms on arithmetic expressions

## Order 0 forms

• The partial derivatives  $\Delta_i$  are evaluated with intervals

• Example: 
$$f(x) = x^2 - x$$
,  $x \in [2, 3]$ , thus  
 $f^{\varepsilon}(\epsilon_1) = (2.5 + 0.5\varepsilon_1)^2 - (2.5 + 0.5\varepsilon_1)$ .  
We get  $\tilde{f}^{\varepsilon}(\varepsilon_1) = 3.75 + [1.5, 2.5]\varepsilon_1$ , that can be interpreted as:

 $pro(3.75 + [1.5, 2.5][1, -1]) \subseteq f([-1, 1]) \subseteq 3.75 + [1.5, 2.5][-1, 1]$ 

• The generalized mean-value theorem defines generalized affine forms: for  $f: \mathbb{R}^n \to \mathbb{R}$ ,

$$f^{\varepsilon}(t_1,\ldots,t_n)+\sum_{i=1}^n \mathbf{\Delta}_{\mathbf{i}}(arepsilon_{\mathbf{i}}-t_i),$$

where  $\left\{ \frac{\partial f^{\varepsilon}}{\partial \varepsilon_i}(\varepsilon), \ \varepsilon \in [-1,1]^n \right\} \sqsubseteq \mathbf{\Delta}_i$ .

• We want an inductive computation of these forms on arithmetic expressions

## Order 0 forms

• The partial derivatives  $\Delta_i$  are evaluated with intervals

• Example: 
$$f(x) = x^2 - x$$
,  $x \in [2, 3]$ , thus  
 $f^{\varepsilon}(\epsilon_1) = (2.5 + 0.5\varepsilon_1)^2 - (2.5 + 0.5\varepsilon_1)$ .  
We get  $\tilde{f}^{\varepsilon}(\varepsilon_1) = 3.75 + [1.5, 2.5]\varepsilon_1$ , that can be interpreted as:

$$pro(3.75 + [1.5, -1.5]) \subseteq f([-1, 1]) \subseteq 3.75 + [-2.5, 2.5]$$

ECHNIQUE É PARIS-SACLAY

• The generalized mean-value theorem defines generalized affine forms: for  $f:\mathbb{R}^n\to\mathbb{R},$ 

$$f^{\varepsilon}(t_1,\ldots,t_n)+\sum_{i=1}^n \Delta_i(\varepsilon_i-t_i),$$

where 
$$\left\{ \frac{\partial f^{\varepsilon}}{\partial \varepsilon_{i}}(\varepsilon), \ \varepsilon \in [-1,1]^{n} 
ight\} \sqsubseteq \mathbf{\Delta}_{i}.$$

• We want an inductive computation of these forms on arithmetic expressions

#### Order 0 forms

 $\bullet$  The partial derivatives  $\Delta_i$  are evaluated with intervals

• Example: 
$$f(x) = x^2 - x$$
,  $x \in [2, 3]$ , thus  
 $f^{\varepsilon}(\epsilon_1) = (2.5 + 0.5\varepsilon_1)^2 - (2.5 + 0.5\varepsilon_1)$ .  
We get  $\tilde{f}^{\varepsilon}(\varepsilon_1) = 3.75 + [1.5, 2.5]\varepsilon_1$ , that can be interpreted as:

 $pro([5.25, 4.25]) \subseteq f([-1, 1]) \subseteq [1.25, 6.25]$ 

TECHNIQU

• The generalized mean-value theorem defines generalized affine forms: for  $f: \mathbb{R}^n \to \mathbb{R}$ ,

$$f^{\varepsilon}(t_1,\ldots,t_n)+\sum_{i=1}^{''}\mathbf{\Delta}_{\mathbf{i}}(arepsilon_{\mathbf{i}}-t_i),$$

where  $\left\{ \frac{\partial f^{\varepsilon}}{\partial \varepsilon_{i}}(\varepsilon), \ \varepsilon \in [-1,1]^{n} 
ight\} \sqsubseteq \mathbf{\Delta}_{i}$ .

• We want an inductive computation of these forms on arithmetic expressions

## Order 0 forms

- $\bullet$  The partial derivatives  $\Delta_i$  are evaluated with intervals
- Example:  $f(x) = x^2 x$ ,  $x \in [2, 3]$ , thus  $f^{\varepsilon}(\epsilon_1) = (2.5 + 0.5\varepsilon_1)^2 - (2.5 + 0.5\varepsilon_1)$ . We get  $\tilde{f}^{\varepsilon}(\varepsilon_1) = 3.75 + [1.5, 2.5]\varepsilon_1$ , that can be interpreted as:

$$[4.25, 5.25] \subseteq f([-1, 1]) \subseteq [1.25, 6.25]$$

Solves the single-occurence limitation but not quite the dependency problem

E PARIS-SACLAY

• The generalized mean-value theorem defines generalized affine forms: for  $f: \mathbb{R}^n \to \mathbb{R}$ ,

$$f^{\varepsilon}(t_1,\ldots,t_n)+\sum_{i=1}^{''}\mathbf{\Delta}_{\mathbf{i}}(arepsilon_{\mathbf{i}}-t_i),$$

where  $\left\{ \frac{\partial f^{\varepsilon}}{\partial \varepsilon_{i}}(\varepsilon), \ \varepsilon \in [-1,1]^{n} 
ight\} \sqsubseteq \mathbf{\Delta}_{i}.$ 

• We want an inductive computation of these forms on arithmetic expressions

## Order 1 forms

- Inductive computations with zonotopic outer-approximations of quantities and partial derivatives  $\Delta_i$  : more precise that order 0
- When computing the inner range of a scalar function as above, we use only the interval range  $\Delta_i$
- But in general we have  $f: \mathbb{R}^n \to \mathbb{R}^p$  and thus vectors of generalized affine forms
- Order 1 forms code some dependency between the components of f or f<sup>ε</sup> : also allows us to define joint inner range

# Joint inner range of a vector function

Algorithm to compute a set of boxes proved to be in the image of f:

- Based on input set bisection + a sufficient condition for a box  $\tilde{\mathbf{y}}$  to be in range( $f, \mathbf{x}$ ).
- Only needs an outer approximation of the Jacobian of f
- Goldzstejn-Jaulin 2010 ( $f : \mathbb{R}^n \to \mathbb{R}^n$ ), MGKP 2013 (extension  $f : \mathbb{R}^n \to \mathbb{R}^p$ )



# Characterization of the joint inner range of order 1 affine vectors: example

#### Example

Let  $x = (x_1, x_2) \in [2, 3] \times [3, 4]$  and

$$f(x) = \begin{pmatrix} x_1^3 - 2x_1x_2 \\ x_2^3 - 2x_1x_2 \end{pmatrix}$$

Joint inner range of the corresponding order  $1 \ \mbox{affine}$  vectors costly but rarely needed





SWIM 2016, ENS Lyon S

#### As an extension of classical program (discrete-time) analysis

- Classical program analysis: inputs given in ranges, possibly with bounds on the gradient between two values
  - Behaviour is often not realistic
- Hybrid systems analysis: analyze both physical environment and control software for better precision
  - Environment modelled by switched ODE systems
    - abstraction by guaranteed integration (the solver is guaranteed to outer-approximate the real solution)
  - Interaction between program and environment modelled by assertions in the program
    - sensor reads a variable value at time t from the environment,
    - actuator sends a variable value at time t to the environment,
- Other possible use of guaranteed integration in program analysis: bound method error of ODE solvers



## Example: the ATV escape mechanism



- Time is controlled by the program (j)
- Program changes parameters (HYBRID\_PARAM: actuators) or mode (not here) of the ODE system
- Program reads from the environment(HYBRID\_DVALUE: sensors) by calling the ODE guaranteed solver

Could demonstrate convergence towards the safe escape state (CAV 2009, DASIA 2009 with Olivier Bouissou).



## Temporal logics : general properties on trajectories

#### Linear time temporal logics

- Simple LTL (Pnueli 1979)
- Metric temporal logics (Koymans 1990) used for falsification of properties in real-time (hybrid) systems, (see e.g. Sankaranarayanan & Fainekos, HSCC 2012

#### Modalities

- 1st order predicate logics  $\land$ ,  $\lor$ ,  $\Rightarrow$ ,  $\neg$  etc.
- temporal modalities ; e.g.
  - D p : p is true always in the future
  - $\Diamond p : p$  is going to be true at some point in the future

#### Adding time (MTL)

- We add a time interval as index to the modalities
- $\Box_{[0,300]} p : p$  is always true for times (in the future) between 0 and 300
- $\Diamond_{[5,10]} p : p$  is eventually true between times 5 and 10

**UNITECHNIQU** 

## Examples

#### This is a logics on states, for all trajectories



#### Examples of interesting properties in control

- Stability (invariance) :  $\Box_{[t,\infty[}(x \in K)$
- A signal x2 being close to a reference signal x1:  $\Box_{[0,\infty[}((x1 > 0.7) \Rightarrow \Diamond_{[0,0.1]}(x2 > 0.7)) \text{ (whener x1 crosses threshold 0.7,}$ so does x2 within [0,0.1] time unit - think of a decision taken by a system computing in finite precision)
- Bounded-time stabilization with respect to disturbances : whenever signal gets outside its reference range, it should be brought in this range in bounded time and remain there for some time  $\Box_{[0,\infty[} ((x \le 100) \land ((x > 10) \rightarrow \Diamond_{[0,150]} \Box_{[0,10]} (x \le 10)))$

SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

#### Branching time logics

- CTL, CTL\* (Clarke, Emerson 1981)
- Add quantification over paths : the future is not determined (as in e.g. dynamical systems with uncertainties, differential inclusions etc.)
- Intuitively : logical operators on paths, and on states

## Syntactically

- A means "for all paths" in the future
- E means "exist a path" in the future
- $\bullet\,$  This is combined with  $\Box\,$  and  $\Diamond\,$
- Example (reachability) : E◊ p, some state satisfying p is reachable in some future path
- Example (safety : p is invariant) : A□ p, all states in all possible futures satisfy p

#### As used in e.g. UPPAAL

- Henzinger, Sifakis et al. 1992
- Several fragments and syntax, basically, add time constraints

ECHNIQUE É PARIS-SACLAN

## Differential inclusions

Consider an uncertain dynamical system, e.g. a differential inclusion :

 $\dot{x} \in F(x)$ 





## Viability property

For all initial states in K, there exists a path such that in the future,  $x \in K$  (the viability kernel) :

$$x(0) \in K \Rightarrow (E \Box \ (x \in K))$$





#### State formulas

- $\Box_I p$  is true (on state x) iff  $\forall t \in I$ , p(t,x) is true
- $\Diamond_I p$  is true (on state x) iff  $\exists t \in I, p(t,x)$  is true.
- Note that  $\neg \Box_I p = \Diamond_I \neg p$

## Path formulas

- A p is true iff  $\forall x, p(t, x)$  is true
- *E p* is true iff  $\exists x$  such that p(x, t) is true
- Note also  $\neg(A p) = E (\neg p)$

#### Combining modalities: examples

- $A \Box_I p$  :  $\forall x, \forall t \in I, p$  is true
- $A \Diamond_I p : \forall x, \exists t \in I$  (potentially depending on x then!), p is true
- $E \Box_I p : \exists x, \forall t \in I, p \text{ is true } (x \text{ does not depend on } t!)$
- $E \diamondsuit_I p : \exists x, \exists t \in I, p \text{ is true}$

For now, we will only discuss these properties

#### Abstraction

Now, we only have approximations of the trajectories  $g(t, x_0)$ , solution of the IVP  $\dot{x} = f(x), x(0) = x_0 \in \mathbf{x}_0$ : suppose we have on time interval I an outer-approximation function  $\overline{\mathbf{g}} : I \times \wp(\mathbb{R}^n) \to \wp(\mathbb{R}^n)$  and an inner-approximation function  $\underline{\mathbf{g}} : I \times \wp(\mathbb{R}^n) \to \wp(\mathbb{R}^n)$  (on time  $\times$  initial condition, generally in box  $\mathbf{x}_0$ ), (semi-)decide some of TCTL formulas!

#### Most notable related work

- Combination of abstract interpretation and model-checking (Clarke, Grumberg & Long 1992) but not applied on numerical properties in general
- Falsification methods on MTL and hybrid systems (Sankaranarayanan & al. S-Taliro tool 2011) but only on one execution
- Monitoring, falsification, parameter synthesis of STL specs. on hybrid systems (Breach, Alexandre Donzé 2010)
- Monitoring of BLTL on hybrid systems (Goldsztejn et al. 2015)



## Sufficient conditions (proof)

- If p is true on  $\overline{\mathbf{g}}(I, \mathbf{x}_0)$  then  $A \Box_I p$  is true (we will see later how to do this)
- If  $\{x \in \mathbb{R}^n | p(x)\} \cap \underline{\mathbf{g}}(I, \mathbf{x_0}) \neq \emptyset$  then  $E \Diamond_I p$  is true
- If  $\exists t \in I$  such that p is true on  $\overline{\mathbf{g}}(t, \mathbf{x_0})$  then  $A \Diamond_I p$
- If p is true on  $\underline{\mathbf{g}}(l, \mathbf{x}_0)$  then  $E \Box_l p$  (strong condition, we can do better, later)

## Necessary conditions (falsification)

- $E \Box_I p$  implies  $\underline{\mathbf{g}}(I, \mathbf{x_0}) \cap \{x \in R^n | p(x)\} \neq \emptyset$
- $A \Diamond_I p$  implies  $\overline{\mathbf{g}}(I, \mathbf{x_0}) \cap \{x \in R^n | p(x)\} \neq \emptyset$

## Use of negation

- Use ¬A□<sub>I</sub>p = E◊<sub>I</sub>¬p; a sufficient condition on the latter (through the inner-approximation) implies that A□p is false (whereas the interpretation using outer-approximation can only prove A□p to be true)
- Similarly, we can use  $\neg A \Diamond_I p = E \Box_I \neg p$



## Sufficient conditions

•  $A \square_{I=[5,7]}(x_1 \ge 180)$  ( $x \ge 180$  is true on  $\overline{\mathbf{g}}(I, \mathbf{x_0})$ )





## Sufficient conditions

- $A \Diamond_I (x_1 \ge 185)$  ( $\exists t \in I$  such that p is true on  $\overline{\mathbf{g}}(t, \mathbf{x_0})$ )
- $E \Box_{I}(x_{1} \geq 185)$  ( $x_{1} \geq 185$  is true on  $g(I, x_{0})$ )
- We cannot prove  $A \Box_l(x_1 \ge 185)$  is true, or false

# Interpreting TCTL



#### Sufficient conditions

•  $E\Diamond_I(x_1 \ge 190) \ (\{x_1 \ge 190\} \cap \underline{\mathbf{g}}(I, \mathbf{x_0}) \neq \emptyset)$ 

#### Use of negation to falsify $A \Box_I (x_1 \ge 190)$

- Use  $\neg A \Box_I (x_1 \ge 190) = E \Diamond_I (x_1 < 190)$
- $E\Diamond_I(x_1 < 190)$   $(\{x_1 < 190\} \cap \underline{\mathbf{g}}(I, \mathbf{x_0}) \neq \emptyset)$  hence  $A \Box_I(x_1 \ge 190)$  is false

#### Problem statement (ODE)

For ODE

$$\dot{x} = f(x)$$
 with  $f : \mathbb{R}^n \to \mathbb{R}^n$ 

- Suppose it has a unique solution on time interval [0, *T*], for an initial condition *x*<sub>0</sub> at time 0.
- Suppose  $g : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$  is the  $C^1$  function such that  $t \to g(t, x_0)$  is the solution to this equation with initial condition  $x_0 \in \mathbb{R}^n$ .

#### Outer-approximation

• Use Taylor method (Moore, Berz & Makino etc.) for outer-approximating solution g to the ODE at some order m :

$$g_j(t, x_0) = x_{0,j} + \sum_{i=1}^m \frac{f_j^{(i)}(0, x_0)}{i!} t^i + \frac{f_j^{(m+1)}(\xi, x_0)}{(m+1)!} t^{m+1}$$

where  $f^{(i)}$  is defined inductively as follows :

$$f_j^{(l+1)}(t,x_0) = \sum_{i=1}^n \frac{\partial f_j^{(l)}}{\partial x_i} f_i(g(t,x_0))$$

## Bounding the remainder: Picard-Lindelöf iteration

#### Integral operator

- Let  $F(g)(t,x) = x_0 + \int_0^t f(g(s,x)) ds$
- Under simple hypotheses, the fixed point of *F* (on a small time interval [0, *T*]) exists and can be computed by iteration of *F*, and is the solution to our ODE

#### Rough enclosures

- Can also be used also to estimate the remainder  $\frac{f_j^{(m+1)}(\xi,x_0)}{(m+1)!}$   $(\xi \in [0, T])$  since this depends on  $g(\xi, x_0)$
- Suppose we have x, an interval such that

$$\mathbf{x_0} + [\mathbf{0}, T]f(\mathbf{x}) \subseteq \mathbf{x}$$

then  $[0, T] \times \mathbf{x}$  contains all points  $g(t, x_0)$ , where g is a solution to our ODE on [0, T],  $t \in [0, T]$  and  $x_0 \in \mathbf{x}_0$ .



#### For inner-approximations

- To compute inner-approximation, we need outer-approximations of the Jacobian of the solution, with respect to initial conditions, as in the discrete case
- The variational equation (as in e.g. Wilczak) is the ODE that is satisfied by g and its Jacobian  $J_{j,i}^{g} = \frac{\partial g_{j}}{\partial x_{0,i}}$  with respect to the initial condition  $x_{0}$ :

$$\begin{array}{lcl} \frac{dg}{dt}(t,x_{0}) & = & f(g(t,x_{0})) \\ \frac{dJ_{j,i}^{g}}{dt}(t,x_{0}) & = & \sum_{k=1}^{n} \frac{\partial f_{j}}{\partial x_{k}}(g(t,x_{0}))J_{k,i}^{g}(t,x_{0}) \end{array}$$

Furthermore, the initial condition that  $g_j$  and  $J_{i,j}^g$  satisfy are :

$$g_j(0, x_0) = x_{0,j}$$
  
 $\int_{i,j}^{g} (0, x_0) = \delta_{i,j}$ 

where  $\delta_{i,i}$  is the Kronecker symbol.



## Example

#### A simple ODE with uncertain initial values

- Consider the ODE  $\dot{x} = x$  with  $x_0 \in [0, 1]$  and  $t \in [0, \frac{1}{2}]$
- The variational equation associated to this ODE is (noting  $J^g = J^g_{1,1}$ ) :

$$rac{dg}{dt}(t,x_0) = g(t,x_0) \ = J^g(t,x_0)$$

Furthermore, the initial condition that g and  $J^g$  satisfy are :

$$g(0, x_0) = x_0$$
  
 $J^g(0, x_0) = 1$ 

#### Rough enclosures

- We see that  $\mathbf{x} = [0, 2]$  satisfies  $[0, 1] + [0, \frac{1}{2}] [0, 2] \subseteq [0, 2]$  hence for all  $t \in [0, \frac{1}{2}]$ , for all  $x_0 \in [0, 1]$ ,  $g(t, x_0) \in [0, 2]$ .
- Furthermore, we see that  $\mathbf{x} = [1,2]$  satisfies  $1 + [0,\frac{1}{2}] [1,2] \subseteq [1,2]$ so for all  $t \in [0,\frac{1}{2}]$ , for all  $x_0 \in [0,1]$ ,  $J^g(t,x_0) \in [1,2]$ .

# Outer-approximation for the solutions (order 3)

#### Taylor model

$$g(t, x_0) = x_0 + x_0 t + \frac{x_0}{2} t^2 + \frac{g(\xi, x_0)}{6} t^3$$

on 
$$x_0 \in \mathbf{x_0} = \frac{1}{2} + \frac{1}{2}\varepsilon_1 \in [0, 1]$$
:  
 $\overline{\mathbf{g}}(t, \mathbf{x_0}) = (\frac{1}{2} + \frac{1}{2}\epsilon_1)(1 + t + \frac{t^2}{2}) + \frac{[0, 2]}{6}t^3$ 



#### For instance, at time $\frac{1}{2}$

 $\overline{\mathbf{g}}\left(\frac{1}{2}, \mathbf{x}_{0}\right) = \left[\frac{13}{16}, \frac{41}{48}\right] + \frac{13}{16}\epsilon_{1}$ Hence  $[0, e^{\frac{1}{2}}] \sim [0, 1.64872] \subseteq \overline{\mathbf{g}}\left(\frac{1}{2}, \mathbf{x}_{0}\right) = \left[0, \frac{5}{3}\right] \sim [0, 1.66667]$ SWIM 2016, ENS Lyon Set-based methods in programs and systems verification

#### Taylor model for the Jacobian

• We can outer-approximate the Jacobian, for all  $t \in [0, \frac{1}{2}]$ :

$$\begin{array}{lcl} J^{g}(t,x_{0}) & = & 1+t+\frac{t^{2}}{2}+\frac{J^{g}(\xi,x_{0})}{6}t^{3}\\ \overline{J^{g}}(t,x_{0}) & = & 1+t+\frac{t^{2}}{2}+\frac{[1,2]}{6}t^{3} \end{array}$$

Example : inner-approximation at time  $t = \frac{1}{2}$ 

• 
$$\overline{\mathsf{J}^{\mathsf{g}}}\left(\frac{1}{2},\mathsf{x}_{\mathbf{0}}\right) \in \left[\frac{79}{48},\frac{5}{3}\right]$$

Mean value theorem, evaluated in ε<sub>1</sub> = 0, that is x<sub>0</sub> = mid(x<sub>0</sub>) = ½, at time t = ½, yields an inner-approximation of {g(½, x<sub>0</sub>), x<sub>0</sub> ∈ x<sub>0</sub> = [0, 1]}:

$$\underline{\mathbf{g}}\left(\frac{1}{2}, \mathbf{x}_{0}\right) = \operatorname{pro}\left(\overline{\mathbf{g}}\left(\frac{1}{2}, \frac{1}{2}\right) + \frac{1}{2}\overline{\mathbf{J}^{g}}\left(\frac{1}{2}, \mathbf{x}_{0}\right)\left[1, -1\right]\right) \\
= \operatorname{pro}\left(\underbrace{\left[\frac{13}{16}, \frac{41}{48}\right]}_{\text{proper}} + \frac{1}{2}\underbrace{\left[\frac{79}{48}, -\frac{79}{48}\right]}_{\text{improper}}\right) = \operatorname{pro}\left(\underbrace{\left[\frac{157}{96}, \frac{3}{96}\right]}_{\text{improper}}\right) \\
= \left[\frac{3}{96}, \frac{157}{96}\right] \sim \left[0.03, 1.635\right] \\
\subseteq \left\{g\left(\frac{1}{2}, \mathbf{x}_{0}\right), \mathbf{x}_{0} \in \mathbf{x}_{0}\right\} = \left[0, e^{\frac{1}{2}}\right] \sim \left[0, 1.649\right]$$

Quality of the approximations: example of the Brusselator

$$\begin{cases} \dot{x}_1 &= 1 + x_1^2 x_2 - 2.5 x_1 \\ \dot{x}_2 &= 1.5 x_1 - x_1^2 x_2 \end{cases}$$

with  $x_1(0) \in [0.9, 1]$  and  $x_2(0) \in [0, 0.1]$ .

Taylor model of order 3 in t, interval vs affine arithmetic evaluation











# Back to inner-approximated function $\mathbf{g}(t, \mathbf{x_0})$ for all $t \in [0, \frac{1}{2}]$ and TCTL

#### For this, we have to compute :

$$\overline{\mathbf{g}}\left(t,\mathsf{mid}(\mathbf{x_0})\right) + \frac{1}{2}\overline{\mathbf{J}^{\mathbf{g}}}\left(t,\mathbf{x_0}\right)\left[1,-1\right] \subseteq \left\{g\left(t,x_0\right), x_0 \in \mathbf{x_0} = [0,1]\right\}$$

#### So we need the center, for all t:

First,

$$\overline{\mathbf{g}}\left(t,\frac{1}{2}\right) = \left[\frac{1}{2} + \frac{1}{2}t + \frac{1}{4}t^{2}, \frac{1}{2} + \frac{1}{2}t + \frac{1}{4}t^{2} + \frac{1}{3}t^{3}\right]$$

And the outer-approximation of the Jacobian, for all t and  $x_0 \in \mathbf{x_0} = [0, 1]$ :

$$\overline{\mathbf{J}^{\mathbf{g}}}(t, \mathbf{x}_{0}) \in \left[1 + t + rac{t^{2}}{2} + rac{1}{6}t^{3}, 1 + t + rac{t^{2}}{2} + rac{1}{3}t^{3}
ight]$$

## Therefore

For all  $t \in \left[0, \frac{1}{2}\right]$ ,

$$\underline{\mathbf{g}}(t,[0,1]) = \left[\frac{t^3}{4}, 1+t+\frac{t^2}{2}+\frac{t^3}{12}\right] \subseteq \{g(t,x_0), x_0 \in [0,1]\}$$

# Function $\mathbf{g}(t, x)$ and application



## Application

- Consider  $E\Diamond_{\left[\frac{1}{4},\frac{1}{2}\right]}$  (y > 1.5)
- It will be true if  $\underline{\mathbf{g}}\left(\left[\frac{1}{4},\frac{1}{2}\right],\left[0,1\right]\right)$  intersects y > 1.5
- We see that

$$\underline{\mathbf{g}}\left(\left[\frac{1}{4},\frac{1}{2}\right],[0,1]\right) = \left[\frac{1}{64},1.5+\frac{7}{48}\right] \cap [1.5,\infty[\neq \emptyset]$$

(ECHNIQUE

## Algorithmically

- We produce Taylor models for solutions and Jacobians (between all [kT, (k+1)T])
- We deduce on all these time intervals  $\overline{\mathbf{g}}$  and  $\underline{\mathbf{g}}$  which are polynomial in *t* with coefficients in affine forms (linking them to uncertain initial values and parameters)
- For predicates p = (f(t, x) ≥ 0) with f polynomial, deciding p is true on <u>g(I, x0)</u> (resp. <u>g(I, x0)</u>) can be done by any interval method (direct evaluation, affine forms, Bernstein polynomials etc.)
- For such predicates, deciding non-emptyness of the intersection of  $\{x \in \mathbb{R}^n | p(x)\}$  with  $\underline{\mathbf{g}}(I, \mathbf{x_0})$  (resp.  $\overline{\mathbf{g}}(I, \mathbf{x_0})$ ) is a constraint satisfaction problem

#### Symbolic expressions in t and the $\varepsilon_i$ allow refinements: example of $E \Box_I p$

- A sufficient condition is p true on  $\underline{\mathbf{g}}(I, \mathbf{x_0})$
- If p = (f(t, x) ≥ 0), a finer criterion is to check the non-emptyness of the constraint on ε<sub>i</sub> : f(I, g(I, x<sub>0</sub>)) ≥ 0 (polynomial in ε<sub>i</sub>)

ECHNIQUE

#### Differential model

$$\begin{aligned} \dot{x}_1 &= -\frac{S\rho B_0}{2m} x_1^2 - gsin\left(\frac{\pi x_2}{180}\right) + \frac{u_1}{m} - \frac{S\rho}{2m} x_1^2 (B_1 u_2 + B_2 u_2^2) \\ \dot{x}_2 &= \frac{S\rho C_0}{2m} x_1 - g \frac{\cos\left(\frac{\pi x_2}{180}\right)}{x_1} + \frac{S\rho C_1}{2m} x_1 u_2 \\ \dot{x}_3 &= x_1 sin\left(\frac{\pi x_2}{180}\right) \end{aligned}$$

with initial conditions  $x_1(0) \in [200, 260]$ ,  $x_2(0) \in [-10, 10]$ ,  $x_3(0) \in [120, 150]$ .

- x<sub>1</sub> : speed, x<sub>2</sub> : angle, x<sub>3</sub> : altitude
- the inputs  $u_1 \in [0.1, 0.2]$  and  $u_2 \in [0.1, 0.2]$  represent respectively the thrust and the angle of attack.
- Constants :  $B_0 = 0.07351, B_1 = -0.0015, B_2 = 0.00061, C_0 = 0.1667, C_1 = 0.109, m = 74000, g = 9.81, S = 158, \rho = 0.3804$
- The model is correct for small angle approximation for  $u_2$ .

#### Typical temporal properties to be checked (Sankaranarayanan 2013)

 $\neg (\Box_{[0.5,1.5]} a \land \Diamond_{[3,4]} b), \ \neg (\Box_{[0,4]} a \land \Diamond_{[3.5,4]} d), \ \neg \Diamond_{[1,3]} e), \ \neg (\Diamond_{[0.5,1]} a \land \Box_{[3,4]} g), \\ \neg (\Box_{[0,5]} h, \ \neg (\Box_{[2,2.5]} (i_1 \land i_2) \text{ where } a \text{ is } 240 \le x_1 \le 250, \ b \text{ is } 230 \le x_1 \le 240, \ d \\ \text{is } 240 \le x_1 \le 240.1, \ e \text{ is } x_1 \ge 260, \ g \text{ is } 270 \le x_1 \le 280, \ h \text{ is } 190 \le x_1 \le 210, \\ i_1 \text{ is } 190 \le x_1 \le 200, \ i_3 \text{ is } 190 \le x_3 \le 200.$ 

# Example : aircraft (Lygeros 2011 & Sankaranarayanan 2014)



# Example : aircraft (Lygeros 2011 & Sankaranarayanan 2014)



SWIM 2016, ENS Lyon

Set-based methods in programs and systems verification

ECHNIQUE E PARIS-SACLAR

# Example : aircraft (Lygeros 2011 & Sankaranarayanan 2014)

Does there also exist trajectories for which  $(\Box_{[0.,1.0]}a \land \Diamond_{[5,7]}b)$  is false ?



## Extension to the full logics

- Interpret the full fragment *A*/*E*(*stateformula*) of TCTL
- Will need propagation of time constraints in the vein of (Ishii, Yonezaki, Goldsztejn 2015 -BLTL)



## Any questions?

