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First-Order vs. Second-Order Sliding Mode Control (1)

System in nonlinear controller canonical form

ẋ(t)=
[
ẋ1(t) . . . ẋn−1(t) ẋn(t)

]T
=
[
x2(t) . . . xn(t) a (x(t),p) + b (x(t),p)·v(t)

]T
with the state vector x(t) ∈ Rn

Requirement for controllability

b (x(t),p) 6= 0 for any possible operating point and system parameter

Feedback linearizing control law for the output y(t) = x1(t)

v(t) =
−a (x(t),p) + u(t)

b (x(t),p)
∈ R
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First-Order vs. Second-Order Sliding Mode Control (1)

System in nonlinear controller canonical form

ẋ(t)=
[
ẋ1(t) . . . ẋn−1(t) ẋn(t)

]T
=
[
x2(t) . . . xn(t) a (x(t),p) + b (x(t),p)·v(t)

]T
with the state vector x(t) ∈ Rn

Feedback linearizing control law for the output y(t) = x1(t)

v(t) =
−a (x(t),p) + u(t)

b (x(t),p)
∈ R

System becomes a pure integrator chain of length n for perfect system and
state information (trivially differentially flat system)
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First-Order vs. Second-Order Sliding Mode Control (2)

n-th order integrator chain model with the output y(t) = x1(t)
ẋ1(t)

...
ẋn−1(t)
ẋn(t)

 =


x2(t)

...
xn(t)
u(t)


Definition of the tracking error and its r-th time derivative

ξ̃
(r)
1 (t) = x

(r)
1 (t)− x(r)1,d(t) with r ∈ {0, 1, . . . , n}

First-order sliding mode (Hurwitz polynomial of order n− 1)

s := s(t) =

n−1∑
r=0

αr ξ̃
(r)
1 (t) , αn−1 = 1 =⇒ s→ 0
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First-Order vs. Second-Order Sliding Mode Control (2)

n-th order integrator chain model with the output y(t) = x1(t)
ẋ1(t)

...
ẋn−1(t)
ẋn(t)

 =


x2(t)

...
xn(t)
u(t)


Definition of the tracking error and its r-th time derivative

ξ̃
(r)
1 (t) = x

(r)
1 (t)− x(r)1,d(t) with r ∈ {0, 1, . . . , n}

Second-order sliding mode (integral component for α−1 6= 0)

γ1ṡ+ γ0s = α−1

∫ t

0
ξ̃1(τ)dτ +

n−1∑
r=0

αr ξ̃
(r)
1 (t) ,

γ0 > 0
γ1 > 0

=⇒ s→ 0
ṡ→ 0

A. Rauh et al.: Interval Methods for Robust Variable-Structure Control with One- and Two-Sided State Constraints 3/44



Sliding Mode Control Example 1 Example 2 Example 3 Outlook Conclusions

Derivation of the Control Law (1)

Lyapunov function candidate (first-order sliding mode)

V 〈I〉 =
1

2
s2 > 0 for s 6= 0

Lyapunov function candidate (second-order sliding mode)

V 〈II〉 =
1

2
·
(
s2 + λṡ2

)
> 0 with the scaling factor λ > 0
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Derivation of the Control Law (2)

Stability requirement (first-order sliding mode)

V̇ 〈I〉 = s · ṡ =

(
n−1∑
r=0

αr ξ̃
(r)
1 (t)

)
·

(
n−1∑
r=0

αr ξ̃
(r+1)
1 (t)

)
< 0 for s 6= 0

Stability requirement (second-order sliding mode), λ = γ1 > 0

V̇ 〈II〉 = s · ṡ+ λ · ṡ · s̈

= s · ṡ+ ṡ ·

(
−λγ0
γ1

ṡ+
λ

γ1

n∑
r=0

αr−1ξ̃
(r)
1 (t)

)
< 0

for s 6= 0 and/ or ṡ 6= 0
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Derivation of the Control Law (2)

Stability requirement (first-order sliding mode)

V̇ 〈I〉 = s · ṡ =

(
n−1∑
r=0

αr ξ̃
(r)
1 (t)

)
·

(
n−1∑
r=0

αr ξ̃
(r+1)
1 (t)

)
< −η · |s|

Stability requirement (second-order sliding mode), λ = γ1 > 0

V̇ 〈II〉 = s · ṡ+ ṡ ·

(
−γ0ṡ+

n−1∑
r=0

αr−1ξ̃
(r)
1 (t) + αn−1 ·

(
u(t)− x(n)1,d(t)

))
< 0
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Derivation of the Control Law (2)

Stability requirement (first-order sliding mode)

(
n−1∑
r=0

αr ξ̃
(r)
1 (t)

)
·

(
n−1∑
r=0

αr ξ̃
(r+1)
1 (t)

)
< −η ·

(
n−1∑
r=0

αr ξ̃
(r)
1 (t)

)
· sign (s)

Stability requirement (second-order sliding mode), λ = γ1 > 0

V̇ 〈II〉 < −η1 · |ṡ| − η2 · |s| · |ṡ| = −ṡ · sign (ṡ) · (η1 + η2 · |s|)
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Derivation of the Control Law (3)

Control law (first-order sliding mode)

u(t) = u〈I〉(t) = x
(n)
1,d(t)−

n−2∑
r=0

αr ξ̃
(r+1)
1 (t)− η̃ · sign (s)

Questions

What are necessary extensions for the interval case?

What are the implementation requirements for an interval-valued
control signal?

Why/ How to generalize preferably the first-order case?
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Derivation of the Control Law (3)

Control law (second-order sliding mode)

u(t) = u〈II〉(t) = x
(n)
1,d(t)

+
1

αn−1
·

(
γ0ṡ− s−

n−1∑
r=0

αr−1ξ̃
(r)
1 (t)− sign (ṡ) · (η̃1 + η̃2 · |s|)

)

Questions

What are necessary extensions for the interval case?

What are the implementation requirements for an interval-valued
control signal?

Why/ How to generalize preferably the first-order case?
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Interval-Based Sliding Mode Control (1)

Definition of tracking error signals and sliding surface

Specification of a sufficiently smooth desired output trajectory
yd = x1,d

Interval definition of the tracking error and its derivatives

ξ̃
(r)
1 ∈

[
ξ̃
(r)
1

]
=
[
x
(r)
1

]
− x(r)1,d , r ∈ {0, 1, . . . , n}

As before: Desired operating points are located on the sliding surface

s := ξ̃
(n−1)
1 (t) +

n−2∑
r=0

αr · ξ̃(r)1 (t) = 0

α0, . . . , αn−2 are coefficients of a Hurwitz polynomial of order n− 1
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Interval-Based Sliding Mode Control (1)

Definition of tracking error signals and sliding surface

Specification of a sufficiently smooth desired output trajectory
yd = x1,d

Interval definition of the tracking error and its derivatives

ξ̃
(r)
1 ∈

[
ξ̃
(r)
1

]
=
[
x
(r)
1

]
− x(r)1,d , r ∈ {0, 1, . . . , n}

As before: Desired operating points are located on the sliding surface

s := ξ̃
(n−1)
1 (t) +

n−2∑
r=0

αr · ξ̃(r)1 (t) = 0

Guaranteed stabilizing control: Lyapunov function candidate

V =
1

2
s2 > 0 with V̇ = s · ṡ < 0 for s 6= 0
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Interval-Based Sliding Mode Control (2)

Guaranteed stabilization despite uncertainty: Interval formulation of a
variable-structure control law

[
v〈I〉
]

:=

−a ([x], [p]) + x
(n)
1,d −

n−2∑
r=0

αr ·
[
ξ̃
(r+1)
1

]
− η̃ ·sign ([s])

b ([x], [p])

with a suitably chosen parameter η̃ > 0 and 0 6∈ b ([x], [p])

Guaranteed stabilizing control: Extraction of suitable point values

V := {v − ε, v + ε, v − ε, v + ε}

with v := inf{[v]}, v := sup{[v]} and some small ε > 0 =⇒ V̇ < 0 needs
to be satisfied with certainty
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Interval-Based Sliding Mode Control (2)

Guaranteed stabilization despite uncertainty: Interval formulation of a
variable-structure control law

[
v〈I〉
]

:=

−a ([x], [p]) + x
(n)
1,d −

n−2∑
r=0

αr ·
[
ξ̃
(r+1)
1

]
− η̃ ·sign ([s])

b ([x], [p])

with a suitably chosen parameter η̃ > 0 and 0 6∈ b ([x], [p])

Guaranteed stabilizing control: Extraction of suitable point values

Guaranteed stabilization of system dynamics

Extension: Guaranteed state constraints in terms of strict one- and
two-sided barrier functions

Inclusion of bounds on input variation rates (reduction of the effect of
chattering)
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Sliding Mode Control with One-Sided State Constraints (1)

Specification of an upper state constraint

x1 < x̄1,max := x1,d + ∆x1,max with ∆x1,max > 0

Extension of the Lyapunov function candidate by a one-sided barrier
function (repelling potential)

Extended ansatz for a Lyapunov function candidate

V 〈j,A〉 = V 〈j〉 + V 〈A〉 > 0 for s 6= 0 with

V 〈A〉 = ρV · ln
(
σV · x̄1,max

x̄1,max − x1

)
and x1 < x̄1,max for both j ∈ {I, II}
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Sliding Mode Control with One-Sided State Constraints (1)

Specification of an upper state constraint

x1 < x̄1,max := x1,d + ∆x1,max with ∆x1,max > 0

Computation of the corresponding time derivative

Extended ansatz for a Lyapunov function candidate

V̇ 〈j,A〉 = V̇ 〈j〉 + V̇ 〈A〉 < 0 with

V̇ 〈A〉 =
ρV

x̄1,max
·
(
−x1 · ˙̄x1,max + ẋ1 · x̄1,max

x̄1,max − x1

)
, ρV > 0 , σV > 0

Note

Dominating influence of V̇ 〈j〉 in the neighborhood of s = 0 must be given
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Sliding Mode Control with One-Sided State Constraints (1)

Specification of an upper state constraint

x1 < x̄1,max := x1,d + ∆x1,max with ∆x1,max > 0

Modified stability requirement (first-order case)

s ·

(
n−2∑
r=0

αr ξ̃
(r+1)
1 + u− x(n)1,d + η · sign (s) +

1

s
· V̇ 〈A〉

)
︸ ︷︷ ︸

−β·sign(s)

< 0
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Sliding Mode Control with One-Sided State Constraints (2)

New control signal for the first-order case

u = u〈I,A〉 = u〈I〉 − s

s2 + ε̃
· V̇ 〈A〉

New control signal for the second-order case

u = u〈II,A〉 = u〈II〉 − 1

αn−1
· ṡ

ṡ2 + ε̃
· V̇ 〈A〉

Note

The approximations 1
s ≈

s
s2+ε̃

and 1
ṡ ≈

ṡ
ṡ2+ε̃

are only necessary for
|s| � 0 and |ṡ| � 0.

The variable-structure part is deactivated in a close vicinity of |s| = 0
and |ṡ| = 0 in the following interval case. For 0 ∈ [s], 0 ∈ [ṡ], the sign
of s and ṡ cannot be determined unambiguously.
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Sliding Mode Control with Two-Sided State Constraints (1)

Specification of worst-case state deviations

|x1 − x1,d| ≥ χ̄ > 0 , χ̄ = const

Extension of the Lyapunov function candidate by a two-sided barrier
function

Extended ansatz for a Lyapunov function candidate

V 〈j,B〉 = V 〈j〉 + V 〈B〉 > 0 for s 6= 0 with

V 〈B〉 = ρV · ln

(
χ̄2l

χ̄2l − (x1 − x1,d)2l

)
and l ∈ N for both j ∈ {I, II}
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Sliding Mode Control with Two-Sided State Constraints (1)

Specification of worst-case state deviations

|x1 − x1,d| ≥ χ̄ > 0 , χ̄ = const

Computation of the corresponding time derivative

Extended ansatz for a Lyapunov function candidate

V̇ 〈j,B〉 = V̇ 〈j〉 + V̇ 〈B〉 < 0 with

V̇ 〈B〉 = ρV ·
2l · (x1 − x1,d)2l−1 · (ẋ1 − ẋ1,d)

χ̄2l − (x1 − x1,d)2l
, ρV > 0

Note

Dominating influence of V̇ 〈j〉 in the neighborhood of s = 0 must be given
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Sliding Mode Control with Two-Sided State Constraints (2)

New control signal for the first-order case

u〈I,B〉 = u〈I〉 − s−1 · V̇ 〈B〉

New control signal for the second-order case

u〈II,B〉 = u〈II〉 − (αn−1 · ṡ)−1 · V̇ 〈B〉

Note

The same approximations 1
s ≈

s
s2+ε̃

and 1
ṡ ≈

ṡ
ṡ2+ε̃

are necessary as before
for |s| � 0 and |ṡ| � 0.
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Interval-Based Sliding Mode Control (continued)

Guaranteed stabilization despite uncertainty: Interval formulation of a
variable-structure control law

[
v〈I〉
]

:=

−a ([x], [p]) + x
(n)
1,d −

n−2∑
r=0

αr ·
[
ξ̃
(r+1)
1

]
− η̃ ·sign ([s])

b ([x], [p])

Extension in the case of one-sided state constraints[
v〈I,A〉

]
=
[
v〈I〉
]
− 1

b ([x] , [p])
· [s]

[s]2 + ε̃
·
[
V̇ 〈A〉

]
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Interval-Based Sliding Mode Control (continued)

Guaranteed stabilization despite uncertainty: Interval formulation of a
variable-structure control law

[
v〈I〉
]

:=

−a ([x], [p]) + x
(n)
1,d −

n−2∑
r=0

αr ·
[
ξ̃
(r+1)
1

]
− η̃ ·sign ([s])

b ([x], [p])

Extension in the case of one-sided state constraints[
v〈I,A〉

]
=
[
v〈I〉
]
− 1

b ([x] , [p])
· [s]

[s]2 + ε̃
·
[
V̇ 〈A〉

]
Extension in the case of two-sided state constraints[

v〈I,B〉
]

=
[
v〈I〉
]
− 1

b ([x] , [p])
· [s]

[s]2 + ε̃
·
[
V̇ 〈B〉

]
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Velocity Control of a Point Mass

System model

Position: x1

Velocity: x2

Input force: x3 (mass normalized to 1)

ẋ1ẋ2
ẋ3

 =

 x2
x3

p1x1 + p2x2 + p3x3 + p4v


with the uncertain parameters pi ∈ [−0.1 ; 0.1], i ∈ {1, 2, 3}, and p4 = 1,
containing both asymptotically stable and unstable realizations
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Control Parameterizations

Lyapunov
function V

Barrier System parameters Measurement
tolerance
for x1

Variable-
structure
gain

Case 1 V 〈I〉,
α0 = 1,
α1 = 0.9

— pi = 0,
i = {1, 2, 3},
p4 = 1

— η̃ = 20

Case 2 V 〈I,A〉,
α0 = 1,
α1 = 0.9

ρV = 0.5,
σV = 1,
∆x1,max = 0.01

pi = 0,
i = {1, 2, 3},
p4 = 1

— η̃ = 20

Case 3 V 〈I,A〉,
α0 = 15,
α1 = 0.9

ρV = 0.75,
σV = 1,
∆x1,max = 0.01

pi ∈ [−0.1 ; 0.1],
i = {1, 2, 3},
p4 = 1

0.0025·[−1; 1] η̃ = 20

Case 4 V 〈I〉,
α0 = 15,
α1 = 0.9

— pi ∈ [−0.1 ; 0.1],
i = {1, 2, 3},
p4 = 1

0.0025·[−1; 1] η̃ = 400

Case 5 V 〈I,B〉,
α0 = 15,
α1 = 0.9

ρV = 5,
l = 1,
χ̄ = 0.165

pi ∈ [−0.1 ; 0.1],
i = {1, 2, 3},
p4 = 1

0.0025·[−1; 1] η̃ = 400
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Simulation Results

System output (Case 1)

time t

x
1,
x
1,
d

0 12842 6 10

x1

x1,d

−0.2

0.2

0.6

1.0

1.4

Tracking error (Case 1)

time t
x
1,
d
−
x
1

0 12842 6 10

1.0

0.8
0.6

0.4

0.2

0

−0.2 state barrier

Violation of one-sided state constraint =⇒ Barrier function is
deactivated, parameters are assumed to be exactly known
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Simulation Results

System output (Case 2)

time t

x
1,
x
1,
d

0 12842 6 10

x1

−0.2

0.2

0.6

1.0

1.4

x1,d

Tracking error (Case 2)

time t
x
1,
d
−
x
1

0 12842 6 10

1.0

0.8
0.6

0.4

0.2

0

−0.2 state barrier

No violation of one-sided state constraint =⇒ Barrier function is
activated, parameters are assumed to be exactly known
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Simulation Results

System output (Case 3)

time t

x
1,
x
1,
d

0 12842 6 10
−0.2

0.2
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1.4

x1

x1,d

Tracking error (Case 3)

time t
x
1,
d
−
x
1

0 12842 6 10

1.0

0.8
0.6

0.4

0.2

0

−0.2 state barrier

No violation of one-sided state constraint =⇒ Barrier function is
activated, parameters and measured states are uncertain
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Simulation Results

System output (Case 4)

time t

x
1,
x
1,
d

0 12842 6 10
−0.2

0.2
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x1

x1,d

Tracking error (Case 4)

time t
x
1,
d
−
x
1

0 12842 6 10

1.0

0.8
0.6

0.4

0.2

0

−0.2

state barrier

Violation of two-sided state constraint =⇒ Barrier function is
deactivated, parameters and measured states are uncertain
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Simulation Results

System output (Case 5)

time t

x
1,
x
1,
d

0 12842 6 10
−0.2
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Tracking error (Case 5)

time t
x
1,
d
−
x
1

0 12842 6 10

1.0

0.8
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0.2
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state barrier

No violation of two-sided state constraint =⇒ Barrier function is
activated, parameters and measured states are uncertain
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Control-Oriented Modeling of SOFC Systems (1)

Configuration of the SOFC test
rig at the Chair of Mechatronics

Supply of fuel gas (hydrogen
and/or mixture of methane,
carbon monoxide, water vapor)

Supply of air

Independent preheaters for fuel
gas and air

Stack module containing fuel
cells in electric series
connection

Electric load as disturbance

A. Rauh et al.: Interval Methods for Robust Variable-Structure Control with One- and Two-Sided State Constraints 21/44



Sliding Mode Control Example 1 Example 2 Example 3 Outlook Conclusions

Control-Oriented Modeling of SOFC Systems (2)

Spatial semi-discretization of the fuel cell stack module

i=1 ,...,L

j=1 ,...,M

k=1,...,N

system
boundary

of supplied
media ṁχ,in

temperature ϑχ ,in

χ∈{AG, CG }
AG: anode gas
CG: cathode gas

=(1,M ,1)

=(1,1,N )

=(L ,1,1)

=(1,1,1)
=(L,M ,N )

1,M,N

⋮
⋮

=(L,M ,1)⋮
⋮

=(1,M ,N )

 
LM

 

 

L N

L
L

mass flow

local temperature distribution ϑ

volume elements ∈{(1,1,1), ... ,(L,M ,N )}

ambient temperature ϑA

ϑA
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Control-Oriented Modeling of SOFC Systems (3)

Mathematical representation of the piecewise homogeneous
temperature distribution =⇒ spatial semi-discretization

ϑ̇I(t) =
1

cImI

Q̇IHT(t) +
∑

G∈{AG,CG}

Q̇I
G,I−j

(t) + Q̇IR(t) + Q̇IEL(t)


1 HT: Heat transfer (heat

conduction and
convection)

2 G: Enthalpy flows of
supplied gases

3 R: Exothermic reaction
enthalpy

4 EL: Ohmic losses

Q̇
HT,  j




Q̇

HT,  j
+



Q̇
HT,  i





Q̇
HT, k

+



Q̇
HT, k




Q̇

HT,  i
+



Q̇R


,Q̇EL



I
 i

=I 
=I
+

stack element

=(i , j ,k)

GQ̇G, j



∑
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Control-Oriented Modeling of SOFC Systems (4)

Local mass flow balances in the semi-discretized fuel cell stack module

Anode gas composition: ṁAG,in(t) = ṁH2,in(t) + ṁN2,in(t) + ṁH2O,in(t)
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Control-Oriented Modeling of SOFC Systems (4)

Local mass flow balances in the semi-discretized fuel cell stack module

Anode gas composition: Air ṁCG,in(t)
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Different Variants of the Finite Volume Model (1)

ϑ(1 ,1 ,1)

xFC=ϑ(1, 1, 1) xFC
T

=[ϑ(1 , 1, 1),ϑ(1 , 2, 1),ϑ(1, 3, 1)] xFC
T

=[ϑ(1 , 1, 1), ... ,ϑ(3 ,3 ,1)]

(I ) (II ) (III )

ϑ(1 ,1 ,1) ϑ(1, 2, 1) ϑ(1 ,3 , 1)

Configuration (I): Typical for synthesizing a controller that is only
applied during the system’s heating phase

Configuration (II): Simplest option for preventing local
overtemperatures: Differentially flat or non-flat scenarios, depending
on the choice of the system output ϑI∗

Configuration (III): Generally non-flat configuration
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Different Variants of the Finite Volume Model (2)

cathode and anode gas preheaters, first-order lag dynamics

pipe, first-order lag dynamics
system boundary of the semi-discretized stack

 anode gas

cathode gas

- desired temp. of anode and cathode gas 

- temperatures at the preheater outlet

- temperatures in the inlet gas manifold

- mass flow (anode, cathode) at preheater outlet

- desired mass flows of anode and cathode gas

ṁAG ,ṁCG

ṁAG,d ,ṁCG,d

ϑAG ,ϑCG

ϑAG,in ,ϑCG,in

ϑAG,d ,ϑCG,d

ϑCG,d

ϑAG,d

ṁCG,d

ṁAG,d

ϑCG
ṁCG

ϑAG
ṁAG

ϑCG,in

ϑAG,in

T SL,AG ,T SL,CG

ṁCG,in

ṁAG,in

- time constants of the preheatersT AG ,T CG

ϑ


System input: Cathode gas enthalpy flow (single-input single-output
formulation) in configuration (II), preheater dynamics neglected

vCG,in(t) = ṁCG,in(t) · ϑCG,in(t)
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Different Variants of the Finite Volume Model (2)

cathode and anode gas preheaters, first-order lag dynamics

pipe, first-order lag dynamics
system boundary of the semi-discretized stack

 anode gas

cathode gas

- desired temp. of anode and cathode gas 

- temperatures at the preheater outlet

- temperatures in the inlet gas manifold

- mass flow (anode, cathode) at preheater outlet

- desired mass flows of anode and cathode gas

ṁAG ,ṁCG

ṁAG,d ,ṁCG,d

ϑAG ,ϑCG

ϑAG,in ,ϑCG,in

ϑAG,d ,ϑCG,d

ϑCG,d

ϑAG,d

ṁCG,d

ṁAG,d

ϑCG
ṁCG

ϑAG
ṁAG

ϑCG,in

ϑAG,in

T SL,AG ,T SL,CG

ṁCG,in

ṁAG,in

- time constants of the preheatersT AG ,T CG

ϑ


System input: Cathode gas enthalpy flow (single-input single-output
formulation) in configuration (II), preheater dynamics included

vCG,d(t) = ṁCG,d(t) · ϑCG,d(t) , ṁCG,d(t) ≈ ṁCG,in(t)
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Different Variants of the Finite Volume Model (2)

cathode and anode gas preheaters, first-order lag dynamics

pipe, first-order lag dynamics
system boundary of the semi-discretized stack

 anode gas

cathode gas

- desired temp. of anode and cathode gas 

- temperatures at the preheater outlet

- temperatures in the inlet gas manifold

- mass flow (anode, cathode) at preheater outlet

- desired mass flows of anode and cathode gas

ṁAG ,ṁCG

ṁAG,d ,ṁCG,d

ϑAG ,ϑCG

ϑAG,in ,ϑCG,in

ϑAG,d ,ϑCG,d

ϑCG,d

ϑAG,d

ṁCG,d

ṁAG,d

ϑCG
ṁCG

ϑAG
ṁAG

ϑCG,in

ϑAG,in

T SL,AG ,T SL,CG

ṁCG,in

ṁAG,in

- time constants of the preheatersT AG ,T CG

ϑ


Vector representation of the input (multi-input single-output
formulation)

uCG,d(t) =

[
ṁCG,d(t)
ϑCG,d(t)

]
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Transformation into Nonlinear Controller Canonical Form (1)

Input-affine state-space representation

ẋ(t) = f (x(t),p, vCG,d(t),vAG,d(t))

Computation of Lie derivatives of the system output
y(t) = h(x(t)) = ϑI∗ , x(t) ∈ RN

dry(t)

dtr
= y(r)(t) = Lrfh(x(t)) = Lf

(
Lr−1f h(x(t))

)
, r = 1, . . . , δ − 1

with the relative degree δ defined according to

∂Lrfh(x(t))

∂vCG,d
≡ 0 for r = 0, . . . , δ − 1 and

∂Lδfh(x(t))

∂vCG,d
6= 0
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Transformation into Nonlinear Controller Canonical Form (2)

Introduction of the new state vector

ξ =
[
h(x), Lfh(x), . . . , Lδ−1f h(x)

]T ∈ Rδ with ξ1 = y = h(x)

New set of state equations (Brunovsky canonical form)

[
ξ̇T ζ̇T

]T
=
[
Lfh(x), . . . , Lδfh(x) Lδ+1

f h(x), . . . , LNf h(x)
]T

=
[
ξ2, . . . , ξδ, ã(x,p, d) a♦(x,p, d)T

]T
+
[

0, . . . , b̃(x,p) · vCG,d b♦(x,p, d, vCG,d, v̇CG,d, . . .)
T
]T

with the additive bounded disturbance d ∈ [d], d ∈ R, and the interval
parameters p ∈ [p], p ∈ Rnp
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Transformation into Nonlinear Controller Canonical Form (3)

Goal: Accurate trajectory tracking and stabilization of the error
dynamics despite the interval uncertainties d ∈ [d] and p ∈ [p][

ξ̇T ζ̇T
]T

=
[
ξ2, . . . , ξδ, ã(x,p, d) a♦(x,p, d)T

]T
+
[

0, . . . , b̃(x,p) · vCG,d b♦(x,p, d, vCG,d, v̇CG,d, . . .)
T
]T

Use of the variable vCG,d as the control input

Derivation of an interval-based variable structure control law

Requirements

Estimation of all state variables x, of the parameters p, the
disturbance d, and their corresponding interval bounds in real time

Note: If δ ≡ N , the output y coincides with the flat system output

Otherwise: The bounded states ζ of the non-controllable internal
dynamics act as disturbances onto the system model
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Transformation into Nonlinear Controller Canonical Form (3)

Goal: Accurate trajectory tracking and stabilization of the error
dynamics despite the interval uncertainties d ∈ [d] and p ∈ [p][

ξ̇T ζ̇T
]T

=
[
ξ2, . . . , ξδ, ã(x,p, d) a♦(x,p, d)T

]T
+
[

0, . . . , b̃(x,p) · vCG,d b♦(x,p, d, vCG,d, v̇CG,d, . . .)
T
]T

Use of the variable vCG,d as the control input

Derivation of an interval-based variable structure control law

Possible estimation approaches

Linear gain-scheduled state observer (Luenberger-like structure)

Sensitivity-based estimation: Receding horizon approach (online
minimization of a quadratic error measure)

Observer in controller canonical form

Robustification by linear matrix inequalities possible
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Handling of Input Rate Limitations

Extension of the system input by a further lag element

Tr · ˙̃vCG,d + ṽCG,d = v̌CG,d

with the new system input v̌CG,d and the fixed time constant Tr > 0

Guaranteed compatibility of the actual system input with the rate
constraints∣∣ ˙̃vCG,d

∣∣ ≤ Tr−1 · (sup{[vCG,max]} − inf{[vCG,max]})

under the prerequisite

inf{[vCG,max]} ≡ inf{[ṽCG,max]} ≡ inf{[v̌CG,max]} ,
sup{[vCG,max]} ≡ sup{[ṽCG,max]} ≡ sup{[v̌CG,max]}

A. Rauh et al.: Interval Methods for Robust Variable-Structure Control with One- and Two-Sided State Constraints 30/44



Sliding Mode Control Example 1 Example 2 Example 3 Outlook Conclusions

Control Parameterization: Basic Approach (Excerpt)
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Control Parameterization: Extension for Online Gain
Scheduling

Case 1: Offline parameterization with cutoff for control signal

Case 2: Online parameterization
1 Define a desired eigenvalue λr of multiplicity δ − 1 on the sliding

surface with corresponding parameters αr
2 Initialize η̃ with the desired value
3 Adapt η̃ in a line-search approach (fixed number of Nη = 5 steps) to

ensure compatibility of ṽCG,d with the control constraints
F Stop, if admissible control is found
F If no admissible control is found within Nη steps, adapt the eigenvalue
λr and restart with Step (2); Break after at most Nλ = 5 repetitions

Treatment of input rate constraints: Extension of the system input by
a further lag element

Simulation case study: L = N = 1, M = 3
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Simulation Results: Stack Temperatures

t in 103 s
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Simulation Results: Tracking Error
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Simulation Results: CG Preheater Inputs
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Control of an Inverted Pendulum

System model: Inverted pendulum on a carriage

State vector z =
[
α z α̇ ż

]T
; Control variable: Force FC

Derivation of a set of first-order state equations with

α̈ =
2g sin(α) (M +m)−maα̇2 sin(2α) + 2 cos(α)FC

a (2M +m (1− cos(2α)))
and

z̈ =
mg sin(2α)− 2ma sin(α)α̇2 + 2FC

2M +m (1− cos(2α))

FC

carriage: mass M

rod: massless, length a

a( )t

z t( )

point mass: mass m
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Control of an Inverted Pendulum

System model: Inverted pendulum on a carriage

State vector z =
[
α z α̇ ż

]T
; y: horizontal pendulum tip position

Derivation of a set of first-order state equations with

α̈ =
2g sin(α) (M +m)−maα̇2 sin(2α) + 2 cos(α)FC

a (2M +m (1− cos(2α)))
and

z̈ =
mg sin(2α)− 2ma sin(α)α̇2 + 2FC

2M +m (1− cos(2α))

FC

carriage: mass M

rod: massless, length a

a( )t

z t( )

point mass: mass m
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Approximate Transformation into Nonlinear Controller
Canonical Form (1)
Successive computation of the output’s Lie derivatives

y = −a sin(α) + z , ẏ = −a cos(α)α̇+ ż

ÿ = a sin(α)α̇2 +
mg sin(2α)− 2ma sin(α)α̇2 + 2FC

2M +m (1− cos(2α))

− cosα
2g sin(α) (M +m)−maα̇2 sin(2α) + 2 cos(α)FC

2M +m (1− cos(2α))

≈ −p1gα+ p2
...
y = p1gα̇+ p3

y(4) = p1gα̈+ p4 = p1g
2g sin(α) (M +m)−maα̇2 sin(2α)

a (2M +m (1− cos(2α)))
+ p4

+
2p1g cos(α)

a (2M +m (1− cos(2α)))
FC =: a (x,p) + b (x,p) · v
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Approximate Transformation into Nonlinear Controller
Canonical Form (2)
State-space representation for control design

State vector after transformation of coordinates x =
[
y ẏ ÿ

...
y
]T

Control input v := FC

Interval parameters [pi], i ∈ {1, . . . , 4} (representation of
approximation and modeling errors)

Error for angle measurement [−0.01 ; 0.01] rad and carriage position
measurement [−0.01 ; 0.01] m

ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = a (x,p) + b (x,p) · v
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Simulation Results

Position y (Case 1)

y
,
y d

in
m

time t in s
0 2 10864

y(t)
yd(t)

0.6

0.4

0.2

0

−0.2

Error yd − y (Case 1)

time t in s
y d
−
y
in

m
0 2 10864

−0.15

−0.10

−0.05

0

0.05

0.10

0.15

interval
bounds

state barrier

yd − y

Violation of two-sided state constraint =⇒ Barrier function is
deactivated, parameters and measured states are uncertain

A. Rauh et al.: Interval Methods for Robust Variable-Structure Control with One- and Two-Sided State Constraints 39/44



Sliding Mode Control Example 1 Example 2 Example 3 Outlook Conclusions

Simulation Results

Position y (Case 2)

y
,
y d

in
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time t in s
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Error yd − y (Case 2)
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No violation of two-sided state constraint =⇒ Barrier function is
activated, parameters and measured states are uncertain
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Outlook: Interval-Based Backstepping Control (1)

Interval-based backstepping control

System model is now given in strict feedback form

ẋ1 = a1 (x1,p) + b1 (x1,p) · x2
ẋ2 = a2 (x1, x2,p) + b2 (x1, x2,p) · x3

...

ẋn = an (x1, . . . , xn,p) + bn (x1, . . . , xn,p) · v

Uncertain parameters p ∈ [p]
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Outlook: Interval-Based Backstepping Control (2)

Interval-based backstepping control

ẋ1 = a1 (x1,p) + b1 (x1,p) · x2
ẋ2 = a2 (x1, x2,p) + b2 (x1, x2,p) · x3

...

ẋn = an (x1, . . . , xn,p) + bn (x1, . . . , xn,p) · v

Control procedure

Successive stabilization of the dynamics for xi, i = 1, . . . , n− 1

Treatment of xi+1 as a virtual control signal in the equation for ẋi

Stabilization using a Lyapunov function candidate, e.g. Vi = 1
2x

2
i ,

V̇i = xiẋi < 0

Differentiability of the virtual control signals is required up to xn
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Outlook: Interval-Based Backstepping Control (3)

Interval-based backstepping control

ẋ1 = a1 (x1,p) + b1 (x1,p) · x2
ẋ2 = a2 (x1, x2,p) + b2 (x1, x2,p) · x3

...

ẋn = an (x1, . . . , xn,p) + bn (x1, . . . , xn,p) · v

Control procedure

Successive stabilization of the dynamics for xi, i = 1, . . . , n− 1

Treatment of xi+1 as a virtual control signal for the equation ẋi

Variable-structure approach for control signal v is possible (including
sign(·)), for earlier stages smooth or regularized controllers
(e.g. tanh(·))

Finally: Proof of the overall system stability
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Conclusions and Outlook on Future Work

Control-oriented modeling of dynamic systems

Verified parameter identification as the basis for control design

Stabilization of the error dynamics using interval techniques

Handling of input and state constraints (guaranteed overshoot
prevention, two-sided worst-case bounds for the system output)

Use of interval analysis in real time

Extension by a sensitivity-based predictive controller

Extension by a (sensitivity-based) state and disturbance observer

Extension by backstepping-like control procedures
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Merci beaucoup pour votre attention!

Thank you for your attention!

Спасибо за Ваше внимание!

Dziękuję bardzo za uwagę!

¡Muchas gracias por su atención! 

Grazie mille per la vostra attenzione! 

Vielen Dank für Ihre Aufmerksamkeit!
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