Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations

Daniel Wilczak and Piotr Zgliczyński

Jagiellonian University, Kraków, Poland

Summer Workshop on Interval Methods June 21, 2016, Lyon, France

Trends in rigorous dynamics for PDEs

- BVP, equilibria, periodic orbits $\rightsquigarrow \mathcal{F}(x)=0$

Arioli, Castelli, Figueras, Gameiro, James, Koch, Lessard, de la Llave, Nakao, Plum, Wanner,...

Trends in rigorous dynamics for PDEs

- BVP, equilibria, periodic orbits $\rightsquigarrow \mathcal{F}(x)=0$

Arioli, Castelli, Figueras, Gameiro, James, Koch, Lessard, de la Llave, Nakao, Plum, Wanner,...

- Conley index, isolating segments

Zgliczyński \& Mischaikow FoCM'2001
Czechowski \& Zgliczyński Schedae Informaticae'2015
Trajectory integration

Trends in rigorous dynamics for PDEs

- BVP, equilibria, periodic orbits $\rightsquigarrow \mathcal{F}(x)=0$

Arioli, Castelli, Figueras, Gameiro, James, Koch, Lessard, de la Llave, Nakao, Plum, Wanner,...

- Conley index, isolating segments

Zgliczyński \& Mischaikow FoCM'2001
Czechowski \& Zgliczyński Schedae Informaticae'2015

- Trajectory integration

Zgliczyński TMNA'2004, FoCM'2010
Arioli \& Koch SIADS'2010
Cyranka SISC'2014

Integration

- periodic orbits for ODEs, PDEs
- connecting orbits for ODEs, PDEs
- invariant manifolds
- bifurcations for ODEs
- chain recurrent sets
- Morse decomposition
\square
- existence and bifurcations of attractors

Integration

- periodic orbits for ODEs, PDEs
- connecting orbits for ODEs, PDEs
- invariant manifolds
- bifurcations for ODEs

Global dynamics:

- chain recurrent sets
- Morse decomposition
- chaos for ODEs, PDEs
- existence and bifurcations of attractors

Global dynamics

Example (Rössler system)

$$
x^{\prime}=-(y+z), \quad y^{\prime}=x+0.2 y, \quad z^{\prime}=0.2+z(x-5.7)
$$

There is a compact, connected invariant set which contains hyperbolic horseshoe.

CAPD library (<1sec)

Global dynamics

Uniformly hyperbolic chaotic attractor for a 4-dim ODE

$$
\begin{cases}\dot{x} & =\omega_{0} u \\ \dot{u} & =-\omega_{0} x+\left(A \cos (2 \pi t / T)-x^{2}\right) u+\left(\varepsilon / \omega_{0}\right) y \cos \left(\omega_{0} t\right), \\ \dot{y} & =2 \omega_{0} v, \\ \dot{v} & =-2 \omega_{0} y+\left(-A \cos (2 \pi t / T)-y^{2}\right) v+\left(\varepsilon / 2 \omega_{0}\right) x^{2}\end{cases}
$$

Parameters:

$$
\omega_{0}=2 \pi, \quad A=5, \quad T=6, \quad \varepsilon=0.5
$$

DW, Uniformly hyperbolic attractor of the Smale-Williams type for a Poincaré map in the Kuznetsov system, SIAM J. App. Dyn. Sys. 2010, Vol. 9, 1263-1283.

Global dynamics

Uniformly hyperbolic chaotic attractor for a 4-dim ODE

$$
\left\{\begin{array}{l}
\dot{x}=\omega_{0} u, \\
\dot{u}=-\omega_{0} x+\left(A \cos (2 \pi t / T)-x^{2}\right) u+\left(\varepsilon / \omega_{0}\right) y \cos \left(\omega_{0} t\right), \\
\dot{y}=2 \omega_{0} v, \\
\dot{v}=-2 \omega_{0} y+\left(-A \cos (2 \pi t / T)-y^{2}\right) v+\left(\varepsilon / 2 \omega_{0}\right) x^{2} .
\end{array}\right.
$$

Parameters:

$$
\omega_{0}=2 \pi, \quad A=5, \quad T=6, \quad \varepsilon=0.5
$$

DW, Uniformly hyperbolic attractor of the Smale-Williams type for a Poincaré map in the Kuznetsov system, SIAM J. App. Dyn. Sys. 2010, Vol. 9, 1263-1283.

Kuramoto-Sivashinsky equations

$$
u_{t}=2 u u_{x}-u_{x x}-\nu u_{x x x x}
$$

Kuramoto-Sivashinsky equations

$$
u_{t}=2 u u_{x}-u_{x x}-\nu u_{x x x x}
$$

2π-periodic, odd

$$
u(t, x)=-2 \sum_{k=1}^{\infty} a_{k}(t) \sin (k x)
$$

Infinite dimensional ODE

Kuramoto-Sivashinsky equations

$$
u_{t}=2 u u_{x}-u_{x x}-\nu u_{x x x x}
$$

2π-periodic, odd

$$
u(t, x)=-2 \sum_{k=1}^{\infty} a_{k}(t) \sin (k x)
$$

Infinite dimensional ODE

$$
a_{k}^{\prime}=k^{2}\left(1-\nu k^{2}\right) a_{k}-k\left(\sum_{n=1}^{k-1} a_{n} a_{k-n}-2 \sum_{n=1}^{\infty} a_{n} a_{n+k}\right)
$$

- ν - large $\Rightarrow u(x) \equiv 0$ is globally attracting
- $\nu=0.127$ - nontrivial equilibria

Zgliczyński \& Mischaikow, FoCM’2001

- $\nu=0.127+[-1,1] \cdot 10^{-7}$,
$\nu=0.125$,
$\nu=0.1215$,
$\nu=0.032$,
(branches of) (symmetric) periodic orbits
Zgliczyński, FoCM'2004, TMNA'2010

- $\nu=4 / 150 \approx 0.02666 \ldots$ - saddle hyperbolic periodic orbit Arioli \& Koch, SIADS'2010
- $\nu=4 / 150 \approx 0.02666 \ldots$ - saddle hyperbolic periodic orbit Arioli \& Koch, SIADS'2010
- $\nu \in\{4 / 150,0.02991,0.0266,0.111405\}$ - periodic orbits Castelli, Figueras, Gameiro, Lessard, de la Llave '2016?
- $\nu=4 / 150 \approx 0.02666 \ldots$ - saddle hyperbolic periodic orbit Arioli \& Koch, SIADS'2010
- $\nu \in\{4 / 150,0.02991,0.0266,0.111405\}$ - periodic orbits Castelli, Figueras, Gameiro, Lessard, de la Llave '2016?
- $\nu=0.1212$ - chaos, countable infinity of periodic orbits DW, Zgliczyński '2016?

Strategy of the proof

(1) Show that all (but finite number) of finite dimensional projections of the system are chaotic

Strategy of the proof

(1) Show that all (but finite number) of finite dimensional projections of the system are chaotic
(2) invariant sets are compact

- automatic differentiation for infinite dimensional systems

Strategy of the proof

(1) Show that all (but finite number) of finite dimensional projections of the system are chaotic
(2) invariant sets are compact
(3) conclude the same for the full system

- automatic differentiation for infinite dimensional systems - validated integration of dPDEs

Strategy of the proof

(1) Show that all (but finite number) of finite dimensional projections of the system are chaotic
(2) invariant sets are compact
(conclude the same for the full system

New tools:

- automatic differentiation for infinite dimensional systems
- validated integration of dPDEs

Strategy of the proof

(1) Show that all (but finite number) of finite dimensional projections of the system are chaotic
(2) invariant sets are compact
(3) conclude the same for the full system

New tools:

- automatic differentiation for infinite dimensional systems
- validated integration of dPDEs

Infinite dimensional ODE

$$
a_{k}^{\prime}=k^{2}\left(1-\nu k^{2}\right) a_{k}-k\left(\sum_{n=1}^{k-1} a_{n} a_{k-n}-2 \sum_{n=1}^{\infty} a_{n} a_{n+k}\right)
$$

Infinite dimensional ODE

$$
a_{k}^{\prime}=k^{2}\left(1-\nu k^{2}\right) a_{k}-k\left(\sum_{n=1}^{k-1} a_{n} a_{k-n}-2 \sum_{n=1}^{\infty} a_{n} a_{n+k}\right)
$$

M-dimensional Galerkin projection

$$
a_{k}^{\prime}=k^{2}\left(1-\nu k^{2}\right) a_{k}-k\left(\sum_{n=1}^{k-1} a_{n} a_{k-n}-2 \sum_{n=1}^{M-k} a_{n} a_{n+k}\right)
$$

$\Pi_{M}=\left\{a_{1}=0 \wedge a_{1}^{\prime}<0\right\}$ - Poincaré section
$P_{M}: \Pi_{M} \rightarrow \Pi_{M}$ - Poincaré map

Observed chaotic attractor for P_{M}

Click here to run animation

Approximate heteroclinic orbits

Result for Galerkin projections

Theorem

For $M \in\{12,14,16,20,25\}$ the M-dimensional
Galerkin projection is chaotic:

- There is an invariant set $\mathcal{H} \subset \Pi_{M}$ on which P_{M} is semiconjugated to a subshift of finite with positive topological entropy
- H contains countable infinity of periodic orbits: every periodic sequence of symbols is realized by a periodic orbit of P_{M}

Graph of symbolic dynamics

- biinfinite path \longrightarrow trajectory
- periodic path \longrightarrow periodic orbit

Time of computation

M	wall time (64CPUs)
12	58 seconds
14	2.03 minutes
16	5.9 minutes
20	54.74 minutes
25	837 minutes

Time of computation

M	wall time (64CPUs)
12	58 seconds
14	2.03 minutes
16	5.9 minutes
20	54.74 minutes
25	837 minutes

- For all but $M=12$ cases the same h-sets have been used.

Time of computation

M	wall time (64CPUs)
12	58 seconds
14	2.03 minutes
16	5.9 minutes
20	54.74 minutes
25	837 minutes

- For all but $M=12$ cases the same h-sets have been used.
- CAPD standard ODE solver used - not optimized for stiff problems

Main numerical result

Consider full infinite dimensional system:
$\Pi=\left\{a_{1}=0 \wedge a_{1}^{\prime}<0\right\} \quad P: \Pi \rightarrow \Pi$

Theorem

- There is an invariant set $\mathcal{H} \subset \Pi$ on which P is semiconjugated to a subshift of finite with positive topological entropy
- H contains countable infinity of periodic orbits

Main numerical result

Consider full infinite dimensional system:
$\Pi=\left\{a_{1}=0 \wedge a_{1}^{\prime}<0\right\} \quad P: \Pi \rightarrow \Pi$

Theorem

- There is an invariant set $\mathcal{H} \subset \Pi$ on which P is semiconjugated to a subshift of finite with positive topological entropy
- H contains countable infinity of periodic orbits

Wall time: 259 minutes on 64CPUs
Corollary: the same result for all Galerkin projections M

Main numerical result

Consider full infinite dimensional system:
$\Pi=\left\{a_{1}=0 \wedge a_{1}^{\prime}<0\right\} \quad P: \Pi \rightarrow \Pi$

Theorem

- There is an invariant set $\mathcal{H} \subset \Pi$ on which P is semiconjugated to a subshift of finite with positive topological entropy
- H contains countable infinity of periodic orbits

Wall time: 259 minutes on 64CPUs
Corollary: the same result for all Galerkin projections $M>23$.

Algorithm

- Automatic differentiation for dPDEs

$$
\begin{aligned}
& \text { Hybrid high-order enclosure and } \\
& \text { dissipative enclosure }
\end{aligned}
$$

Algorithm

- Automatic differentiation for dPDEs

Algorithm

- Automatic differentiation for dPDEs
- Hybrid high-order enclosure and dissipative enclosure

Algorithm

- Automatic differentiation for dPDEs
- Hybrid high-order enclosure and dissipative enclosure
- Quite sophisticated algorithm for Poincaré maps (from CAPD)

Parameters of the algorithm

 $m \leq M$ - positive integers $(14,23)$
Parameters of the algorithm

 $m \leq M$ - positive integers $(14,23)$Representation of sequences (GeometricBound)

- $k \leq m$ - doubleton, tripleton, any known from ODEs

$$
\left(a_{1}, \ldots, a_{m}\right) \in x_{0}+C r_{0}+Q r
$$

Parameters of the algorithm

 $m \leq M$ - positive integers $(14,23)$Representation of sequences (GeometricBound)

- $k \leq m$ - doubleton, tripleton, any known from ODEs

$$
\left(a_{1}, \ldots, a_{m}\right) \in x_{0}+C r_{0}+Q r
$$

- $k=m+1, \ldots, M$ - interval

$$
a_{k} \in\left[a_{k}^{-}, a_{k}^{+}\right]
$$

Parameters of the algorithm

 $m \leq M$ - positive integers $(14,23)$Representation of sequences (GeometricBound)

- $k \leq m$ - doubleton, tripleton, any known from ODEs

$$
\left(a_{1}, \ldots, a_{m}\right) \in x_{0}+C r_{0}+Q r
$$

- $k=m+1, \ldots, M$ - interval

$$
a_{k} \in\left[a_{k}^{-}, a_{k}^{+}\right]
$$

- $k>M$ - geometric decay (harmonic, mixed, ...)

$$
\left|a_{k}\right| \leq C q^{-k}
$$

with $q>1$ and $C \geq 0$.

K-S equation in the Fourier basis

$$
\begin{aligned}
a_{k}^{\prime} & =k^{2}\left(1-\nu k^{2}\right) a_{k}-k\left(\sum_{n=1}^{k-1} a_{n} a_{k-n}-2 \sum_{n=1}^{\infty} a_{n} a_{n+k}\right) \\
& =L_{k} a_{k}+k E_{k}(a)+k l_{k}(a)
\end{aligned}
$$

E - finite part
l - infinite part

K-S equation in the Fourier basis

$$
\begin{aligned}
a_{k}^{\prime} & =k^{2}\left(1-\nu k^{2}\right) a_{k}-k\left(\sum_{n=1}^{k-1} a_{n} a_{k-n}-2 \sum_{n=1}^{\infty} a_{n} a_{n+k}\right) \\
& =L_{k} a_{k}+k E_{k}(a)+k I_{k}(a)
\end{aligned}
$$

E - finite part
l - infinite part

Each component is an univariate function

$$
a_{k}(t)=\sum_{i=0}^{r} a_{k}^{[i]} t^{i}+\left[R_{k}\right] .
$$

Automatic differentiation

$$
(i+1) a_{k}^{[i+1]}=L_{k} a_{k}^{[i]}+k E_{k}^{[[]}(a)+k l_{k}^{[]]}(a)
$$

Automatic differentiation

$$
\begin{aligned}
(i+1) a_{k}^{[i+1]} & =L_{k} a_{k}^{[1]}+k E_{k}^{[1]}(a)+k l_{k}^{[1]}(a) \\
& =L_{k} a_{k}^{[]]}+k E_{k}^{[]]}(a)+F_{k}\left(a^{[0]}, a^{[1]}, \ldots, a^{[]]}\right)
\end{aligned}
$$

Automatic differentiation

$$
\begin{aligned}
(i+1) a_{k}^{[i+1]} & =L_{k} a_{k}^{[1]}+k E_{k}^{[1]}(a)+k l_{k}^{[1]}(a) \\
& =L_{k} a_{k}^{[]]}+k E_{k}^{[]]}(a)+F_{k}\left(a^{[0]}, a^{[1]}, \ldots, a^{[]]}\right)
\end{aligned}
$$

Technical lemma(s):
If

$$
a^{[j]}=\text { GeometricBound }\left(C_{j}, q_{j}\right)
$$

for $j=0,1, \ldots, i$ then

$$
\left|F_{k}\right| \leq D k^{s} \min \left\{q_{j}\right\}^{-k}
$$

Automatic differentiation

$$
\begin{aligned}
(i+1) a_{k}^{[i+1]} & =L_{k} a_{k}^{[1]}+k E_{k}^{[1]}(a)+k l_{k}^{[]]}(a) \\
& =L_{k} a_{k}^{[]]}+k E_{k}^{[]]}(a)+F_{k}\left(a^{[0]}, a^{[1]}, \ldots, a^{[]]}\right)
\end{aligned}
$$

Technical lemma(s):
If

$$
a^{[j]}=\text { GeometricBound }\left(C_{j}, q_{j}\right)
$$

for $j=0,1, \ldots, i$ then

$$
\left|F_{k}\right| \leq D k^{s} \min \left\{q_{j}\right\}^{-k}
$$

Lemma

There are computable constants C_{i+1} and $1<q_{i+1}<q_{i}$ such that

$$
a^{[i+1]}=\operatorname{GeometricBound}\left(C_{i+1}, q_{i+1}\right)
$$

Variational equations

$$
\frac{\partial a_{k}}{\partial a_{c}}(t)=a_{k, c}(t)=\sum_{i=0}^{\infty} a_{k, c}^{[i]} t^{i} .
$$

Variational equations

$$
\frac{\partial a_{k}}{\partial a_{c}}(t)=a_{k, c}(t)=\sum_{i=0}^{\infty} a_{k, c}^{[]]} t^{i} .
$$

Then

$$
\begin{aligned}
a_{k, c}^{\prime} & =L_{k} a_{k, c}-k \sum_{n=1}^{k-1} a_{n, c} a_{k-n}+a_{n} a_{k-n, c} \\
& +2 \sum_{n=1}^{\infty} a_{n, c} a_{n+k}+a_{n} a_{n+k, c} \\
& =L_{k} a_{k, c}+k E_{k, c}(a)+k l_{k, c}(a)
\end{aligned}
$$

Variational equations

$$
\frac{\partial a_{k}}{\partial a_{c}}(t)=a_{k, c}(t)=\sum_{i=0}^{\infty} a_{k, c}^{[i]} t^{i} .
$$

Then

$$
\begin{aligned}
a_{k, c}^{\prime} & =L_{k} a_{k, c}-k \sum_{n=1}^{k-1} a_{n, c} a_{k-n}+a_{n} a_{k-n, c} \\
& +2 \sum_{n=1}^{\infty} a_{n, c} a_{n+k}+a_{n} a_{n+k, c} \\
& =L_{k} a_{k, c}+k E_{k, c}(a)+k l_{k, c}(a)
\end{aligned}
$$

Automatic differentiation for variational equations

$$
\begin{aligned}
(i+1) a_{k, c}^{[i+1]} & =L_{k} a_{k, c}^{[]]}+k E_{k, c}^{[i]}(a) \\
& +F_{k, c}\left(a^{[0]}, a^{[1]}, \ldots, a^{[i]}, a_{*, c}^{[0]}, a_{*, c}^{[1]}, \ldots, a_{*, c}^{[i]}\right)
\end{aligned}
$$

Rough enclosure

$\dot{x}=f(x)$ - an ODE
X - set of initial conditions
$h>0$ - time step

Rough enclosure

$\dot{x}=f(x)-$ an ODE
X - set of initial conditions
$h>0$ - time step

$$
X(h) \subset \sum_{i=0}^{\infty} x^{[i]} h^{i}
$$

Rough enclosure

$\dot{x}=f(x)$ - an ODE
X - set of initial conditions
$h>0$ - time step

$$
\begin{gathered}
X(h) \subset \sum_{i=0}^{\infty} X^{[i]} h^{i} \\
X(h) \subset \sum_{i=0}^{p} x^{[[]} h^{i}+R
\end{gathered}
$$

High-order enclosure

Theorem

If Y is such that

$$
\sum_{i=0}^{p} X^{[i]}[0, h]^{i}+\mathbf{Y}^{[p+1]}[0, h]^{p+1} \subset \operatorname{int}(\mathbf{Y})
$$

then for $t \in[0, h], x \in X$ there holds

$$
x(t) \in \mathbf{Y}
$$

High-order enclosure

Theorem

If Y is such that

$$
\sum_{i=0}^{p} X^{[i]}[0, h]^{i}+\mathbf{Y}^{[p+1]}[0, h]^{p+1} \subset \operatorname{int}(\mathbf{Y})
$$

then for $t \in[0, h], x \in X$ there holds

$$
x(t) \in \mathbf{Y}
$$

We can bound

$$
X(h) \subset \sum_{i=0}^{p} X^{[i]} h^{i}+Y^{[p+1]}[0, h]^{p+1}
$$

High-order enclosure

Theorem

If Y is such that

$$
\sum_{i=0}^{p} X^{[i]}[0, h]^{i}+Y^{[p+1]}[0, h]^{p+1} \subset \operatorname{int}(\mathbf{Y})
$$

then for $t \in[0, h], x \in X$ there holds

$$
x(t) \in \mathbf{Y}
$$

We can bound

$$
X(h) \subset \sum_{i=0}^{p} X^{[i]} h^{i}+Y^{[p+1]}[0, h]^{p+1}
$$

Important good prediction of h and Y

Example

$$
x^{\prime \prime}=-\sin (x)+0.1 x^{\prime}, \quad h=0.25
$$

$$
\begin{aligned}
& {[X]=[1.2] \times[0.4,0.5]} \\
& {[Y]=[X]+h[-.2,1.5] * f([X]) \subset[0.9749,2.1875] \times[0.04,0.548]}
\end{aligned}
$$

Example

$$
x^{\prime \prime}=-\sin (x)+0.1 x^{\prime}, \quad h=0.25
$$

Example

$$
x^{\prime \prime}=-\sin (x)+0.1 x^{\prime}, \quad h=0.25
$$

$[\mathrm{X}]=[1,2] \times[0.4,0.5]$
$[\mathbf{Y}]=[X]+h[-.2,1.5] * f([X]) \subset[0.9749,2.1875] \times[0.04,0.548]$

Example

$$
x^{\prime \prime}=-\sin (x)+0.1 x^{\prime}, \quad h=0.25
$$

$[\mathrm{X}]=[1,2] \times[0.4,0.5]$
$[\mathbf{Y}]=[X]+h[-.2,1.5] * f([X]) \subset[0.9749,2.1875] \times[0.04,0.548]$
$[Z]=[X]+[0, h] * f([Y]) \subset[1.0,2.137] \times[0.1502,0.5] \subset \operatorname{int}([Y])$

Enclosure algorithm for PDEs

Parameters

- $p \geq 1$ - order of enclosure
- D - positive integer
number of modes on which High-Order Enclosure acts
- h_{0} - a candidate for the time step

Enclosure algorithm for PDEs

Parameters

- $p \geq 1$ - order of enclosure
- D - positive integer
number of modes on which High-Order Enclosure acts
- h_{0} - a candidate for the time step

Main steps

(0) predict enclosure on $\left(a_{1}, \ldots, a_{D}\right)$ with h_{0}
© compute enclosure for $k>D$ using isolation
(3) validate enclosure on $\left(a_{1}, \ldots, a_{D}\right)$

Enclosure algorithm for PDEs

Parameters

- $p \geq 1$ - order of enclosure
- D - positive integer
number of modes on which High-Order Enclosure acts
- h_{0} - a candidate for the time step

Main steps

(0) predict enclosure on $\left(a_{1}, \ldots, a_{D}\right)$ with h_{0}
(2) compute enclosure for $k>D$ using isolation
© validate enclosure on $\left(a_{1}, \ldots, a_{0}\right)$

Enclosure algorithm for PDEs

Parameters

- $p \geq 1$ - order of enclosure
- D - positive integer
number of modes on which High-Order Enclosure acts
- h_{0} - a candidate for the time step

Main steps

(0) predict enclosure on $\left(a_{1}, \ldots, a_{D}\right)$ with h_{0}
(2) compute enclosure for $k>D$ using isolation
(3) validate enclosure on $\left(a_{1}, \ldots, a_{D}\right)$
adjust final step $h \leq h_{0}$
ε - user specified tolerance per one step

Predict a high-order enclosure for $k \leq D$

$$
Y_{k}=\sum_{i=0}^{p} a_{k}^{[i]}\left[0, h_{0}\right]^{i}+[-\varepsilon, \varepsilon]
$$

Conditional enclosure for $k>D$

$$
Y=\text { GeometricBound }\left(\left(Y_{1}, \ldots, Y_{M}\right), C, q\right)
$$

Conditional enclosure for $k>D$

$$
Y=\text { GeometricBound }\left(\left(Y_{1}, \ldots, Y_{M}\right), C, q\right)
$$

- Assume $\left(Y_{1}, \ldots, Y_{D}\right)$ is an enclosure for $\left[0, h_{0}\right]$

Enlarge field is pointing inwards the interval

Conditional enclosure for $k>D$

$$
Y=\text { GeometricBound }\left(\left(Y_{1}, \ldots, Y_{M}\right), C, q\right)
$$

- Assume $\left(Y_{1}, \ldots, Y_{D}\right)$ is an enclosure for $\left[0, h_{0}\right]$
- Enlarge Y_{D+1}, \ldots, Y_{M} and C as long as vector field is pointing inwards the interval $Y_{k}, k>D$

Conditional enclosure for $k>D$

$$
Y=\text { GeometricBound }\left(\left(Y_{1}, \ldots, Y_{M}\right), C, q\right)
$$

- Assume $\left(Y_{1}, \ldots, Y_{D}\right)$ is an enclosure for $\left[0, h_{0}\right]$
- Enlarge Y_{D+1}, \ldots, Y_{M} and C as long as vector field is pointing inwards the interval $Y_{k}, k>D$

$$
\begin{aligned}
& \mathbf{L}_{\mathbf{k}} \mathbf{a}_{\mathbf{k}} \in \Theta\left(\mathbf{k}^{4}\right) \mathbf{q}^{-\mathbf{k}}, \quad \mathbf{L}_{\mathbf{k}}<\mathbf{0} \\
& \mathbf{N}_{\mathbf{k}}(\mathbf{a}) \in \mathbf{O}\left(\mathbf{k}^{2}\right) \mathbf{q}^{-\mathbf{k}}
\end{aligned}
$$

Validate $\left(Y_{1}, \ldots, Y_{D}\right)$

From prediction:

$$
Y_{k}=\sum_{i=0}^{p} a_{k}^{[1]}\left[0, h_{0}\right]^{i}+[-\varepsilon, \varepsilon]
$$

Validate $\left(Y_{1}, \ldots, Y_{D}\right)$

From prediction:

$$
Y_{k}=\sum_{i=0}^{p} a_{k}^{[i]}\left[0, h_{0}\right]^{i}+[-\varepsilon, \varepsilon]
$$

Check

$$
Y_{k}^{[p+1]}\left[0, h_{0}\right]^{p+1} \subset[-\varepsilon, \varepsilon]
$$

Validate $\left(Y_{1}, \ldots, Y_{D}\right)$

From prediction:

$$
Y_{k}=\sum_{i=0}^{p} a_{k}^{[i]}\left[0, h_{0}\right]^{i}+[-\varepsilon, \varepsilon]
$$

Check

$$
Y_{k}^{[p+1]}\left[0, h_{0}\right]^{p+1} \subset[-\varepsilon, \varepsilon]
$$

If not satisfied then find $\mathbf{h} \leq h_{0}$ such that

$$
Y_{k}^{[p+1]}[0, h]^{p+1} \subset[-\varepsilon, \varepsilon]
$$

Adjust h if necessary

Adjust h if necessary

Taylor method

$$
a(h)=\sum_{i=0}^{p} a^{[i]} h^{i}+Y^{[p+1]}[0, h]^{p+1}=\Phi(h, a)+R .
$$

Taylor method

$$
a(h)=\sum_{i=0}^{p} a^{[i]} h^{i}+Y^{[p+1]}[0, h]^{p+1}=\Phi(h, a)+R
$$

Split initial condition

$$
a=\left(a_{1}, \ldots, a_{M}, a_{M+1}, a_{M+2}, \ldots\right)=\left(x_{0}+\Delta x, y\right)
$$

Taylor method

$$
a(h)=\sum_{i=0}^{p} a^{[i]} h^{i}+Y^{[p+1]}[0, h]^{p+1}=\Phi(h, a)+R .
$$

Split initial condition

$$
a=\left(a_{1}, \ldots, a_{M}, a_{M+1}, a_{M+2}, \ldots\right)=\left(x_{0}+\Delta x, y\right)
$$

One step enclosure for $k=1, \ldots, M$:

$$
\Phi_{k}(h, a) \subset \Phi_{k}\left(h,\left(x_{0}, y\right)\right)+D_{x} \Phi_{k}(h, a) \cdot(\Delta x, y)
$$

Taylor method

$$
a(h)=\sum_{i=0}^{p} a^{[i]} h^{i}+Y^{[p+1]}[0, h]^{p+1}=\Phi(h, a)+R
$$

Split initial condition

$$
a=\left(a_{1}, \ldots, a_{M}, a_{M+1}, a_{M+2}, \ldots\right)=\left(x_{0}+\Delta x, y\right)
$$

One step enclosure for $k=1, \ldots, M$:

$$
\Phi_{k}(h, a) \subset \Phi_{k}\left(h,\left(x_{0}, y\right)\right)+D_{x} \Phi_{k}(h, a) \cdot(\Delta x, y)
$$

One step enclosure for $j>M$:

$$
Y_{k}^{\prime}<L_{k} Y_{k}+C \Rightarrow a_{k}(h)<\left(Y_{k}(0)-\frac{C}{-L_{k}}\right) e^{h L_{k}}+\frac{C}{-L_{k}}
$$

Important property of the algorithm:

The algorithm integrates simultaneously all N-dimensional Galerkin projections with $N>M$.

Proof of stable periodic orbit

Result reproduced from Zgliczyński FoCM'2004

$$
\begin{array}{c|c|c}
u_{i} & P_{i}(u) & \lambda_{i} \\
{[-1,1] \cdot 10^{-5}} & {[-5.45,5.45] \cdot 10^{-6}} & 0.5258 \\
{[-1,1] \cdot 10^{-5}} & {[-9.85,9.81] \cdot 10^{-7}} & 0.0903 \\
{[-1,1] \cdot 10^{-5}} & {[-5.86,4.67] \cdot 10^{-9}} & 3.5 \cdot 10^{-8} \\
{[-1,1] \cdot 10^{-5}} & {[-6.61,4.32] \cdot 10^{-9}} & 1.65 \cdot 10^{-8} \\
{[-1,1] \cdot 10^{-5}} & {[-8.02,5.65] \cdot 10^{-9}} & -3.77 \cdot 10^{-9} \\
{[-1,1] \cdot 10^{-5}} & {[-6.62,8.19] \cdot 10^{-9}} & -4.01 \cdot 10^{-11} \\
{[-1,1] \cdot 10^{-5}} & {[-7.30,9.62] \cdot 10^{-9}} & -8.94 \cdot 10^{-10} \\
{[-1,1] \cdot 10^{-5}} & {[-2.15,1.53] \cdot 10^{-9}} & -6.69 \cdot 10^{-11} \\
\ldots & \ldots & k>23 \\
k>23 & k>23 & \\
10^{-5}(1.5)^{-k} & 5.01 \cdot 10^{-8}(1.5)^{-k} &
\end{array}
$$

Topological tool for chaos

Covering relations

P. Zgliczyński, M. Gidea, JDE’2004

One unstable direction

Two unstable directions

Theorem (Zgliczyński, Gidea)

Every binifinite (periodic) sequence of covering relations is realised by a (periodic) trajectory.

Model 2D situation:

- N covers M and itself
- M covers N and itself

- There are points jumping between N and M in any prescribed order $\{N, M\}^{\mathbb{Z}}$
- periodic sequence $\{N, M\}^{\mathbb{Z}} \rightsquigarrow$ periodic point

Chaos in the KS equations:

- Find approximate two periodic orbits P_{1} and P_{2}
(0) find approximate finite trajectories
(a) H_{12} : starting very close to P_{1} and ending very close to P_{2}
(b) H_{21} : starting very close to P_{2} and ending very close to P_{1}
(0) construct sequence of covering relations:
(a) $P_{1} \Longrightarrow P_{1} \Longrightarrow H_{12}^{1} \Longrightarrow \cdots \Longrightarrow H_{12}^{n} \Longrightarrow P_{2}$
(b) $P_{2} \Longrightarrow P_{2} \Longrightarrow H_{21}^{1} \cdots \Longrightarrow \cdots H_{21}^{m} \Longrightarrow P_{1}$

Approximate heteroclinic orbits

Unstable periodic orbit for $\nu=0.1212$

Data from the proof of blue \Longrightarrow blue

u_{i}	$P_{i}(u)$	λ_{i}
$3.8[-1,1] \cdot 10^{-6}$	$[-8.09,8.09] \cdot 10^{-6}$	-1.7704
$1.9[-1,1] \cdot 10^{-7}$	$[-4.33,4.59] \cdot 10^{-8}$	-0.06511
$1.9[-1,1] \cdot 10^{-7}$	$[-2.35,1.68] \cdot 10^{-8}$	$-2.92 \cdot 10^{-16}$
$1.9[-1,1] \cdot 10^{-7}$	$[-0.718,1.13] \cdot 10^{-8}$	≈ 0
$1.9[-1,1] \cdot 10^{-7}$	$[-0.982,1.40] \cdot 10^{-8}$	≈ 0
$1.9[-1,1] \cdot 10^{-7}$	$[-1.33,2.04] \cdot 10^{-8}$	≈ 0
$1.9[-1,1] \cdot 10^{-7}$	$[-2.86,3.64] \cdot 10^{-9}$	≈ 0
$1.9[-1,1] \cdot 10^{-7}$	$[-2.75,1.67] \cdot 10^{-9}$	≈ 0
$1.9[-1,1] \cdot 10^{-7}$	$[-3.64,4.31] \cdot 10^{-10}$	≈ 0
\ldots	\ldots	$k>23$
$k>23$	$2.64 \cdot 10^{-9}(1.5)^{-k}$	
$1.9 \cdot 10^{-7}(1.5)^{-k}$		

Thank you for your attention

